Modulation of activation kinetics by divalent ions is one of the characteristic features of Eag channels. Here, we report that Mg(2+)-dependent deceleration of Eag channel activation is significantly attenuated by a G297E mutation, which exhibits a gain-of-function phenotype in Drosophila by suppressing the effect of shaker mutation on behavior and neuronal excitability. The G297 residue is located in the intracellular linker of transmembrane segments S2 and S3, and is thus not involved in direct binding of Mg(2+) ions. Moreover, mutation of the only positively charged residue in the other intracellular linker between S4 and S5 also results in a dramatic reduction of Mg(2+)-dependent modulation of Eag activation kinetics. Collectively, the two mutations in eag eliminate or even paradoxically reverse the effect of Mg(2+) on channel activation and inactivation kinetics. Together, these results suggest an important role of the intracellular linker regions in gating processes of Eag channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322480PMC
http://dx.doi.org/10.4161/chan.4.4.12329DOI Listing

Publication Analysis

Top Keywords

intracellular linker
12
mg2+-dependent modulation
8
modulation eag
8
activation kinetics
8
eag channels
8
channel activation
8
eag
6
intracellular
4
intracellular linkers
4
linkers involved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!