Protein deficiency is the most crucial factor that affects physical growth and development and that increases morbidity and mortality especially in developing countries. Efforts have been made to improve protein quality and quantity in crop plants but with limited success. Here, we report the development of transgenic potatoes with enhanced nutritive value by tuber-specific expression of a seed protein, AmA1 (Amaranth Albumin 1), in seven genotypic backgrounds suitable for cultivation in different agro-climatic regions. Analyses of the transgenic tubers revealed up to 60% increase in total protein content. In addition, the concentrations of several essential amino acids were increased significantly in transgenic tubers, which are otherwise limited in potato. Moreover, the transgenics also exhibited enhanced photosynthetic activity with a concomitant increase in total biomass. These results are striking because this genetic manipulation also resulted in a moderate increase in tuber yield. The comparative protein profiling suggests that the proteome rebalancing might cause increased protein content in transgenic tubers. Furthermore, the data on field performance and safety evaluation indicate that the transgenic potatoes are suitable for commercial cultivation. In vitro and in vivo studies on experimental animals demonstrate that the transgenic tubers are also safe for human consumption. Altogether, these results emphasize that the expression of AmA1 is a potential strategy for the nutritional improvement of food crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955143 | PMC |
http://dx.doi.org/10.1073/pnas.1006265107 | DOI Listing |
J Plant Physiol
December 2024
Huzhou Wuxing Jinnong Ecological Agriculture Development Co. LTD, Huzhou, Zhejiang, 313000, People's Republic of China. Electronic address:
Amino acid transporters are membrane proteins that mediate amino acid transport across the plasma membrane. They play a significant role in plant growth and development. The amino acid permease (AAP) subfamily belongs to the activating transcription factor family, which is one of the main amino acid transporter families.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
The ubiquitin-proteasome system (UPS) is a key protein degradation pathway in eukaryotes, in which E3 ubiquitin ligases mediate protein ubiquitination, directly or indirectly targeting substrate proteins to regulate various biological processes, including plant growth, hormone signaling, immune responses, and adaptation to abiotic stress. In this study, we identified plant U-box protein 51 in () as an E3 ubiquitin ligase through transcriptomic analysis, and used it as a candidate gene for gene-function analysis. Quantitative real-time PCR (qRT-PCR) was used to examine expression across different tissues, and its expression patterns under simulated drought stress induced by polyethylene glycol (PEG 6000) were assessed.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
Nat Plants
December 2024
Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China.
Plant Biotechnol J
December 2024
John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
The molecular mechanisms underpinning the formation of the large, ellipsoidal starch granules of potato tuber are poorly understood. Here, we demonstrate the distinct effects of PROTEIN TARGETING TO STARCH2b (PTST2b) and MYOSIN RESEMBLING CHLOROPLAST PROTEIN (MRC) on tuber starch granule morphology. A gene duplication event in the Solanaceae resulted in two PTST2 paralogs (PTST2a and PTST2b).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!