Objective: Toll-like receptor 4 (TLR4) has been reported to induce insulin resistance through inflammation in high-fat-fed mice. However, the physiological role of TLR4 in metabolism is unknown. Here, we investigated the involvement of TLR4 in fasting metabolism.
Research Design And Methods: Wild-type and TLR4 deficient (TLR4(-/-)) mice were either fed or fasted for 24 h. Glucose and lipid levels in circulation and tissues were measured. Glucose and lipid metabolism in tissues, as well as the expression of related enzymes, was examined.
Results: Mice lacking TLR4 displayed aggravated fasting hypoglycemia, along with normal hepatic gluconeogenesis, but reversed activity of pyruvate dehydrogenase complex (PDC) in skeletal muscle, which might account for the fasting hypoglycemia. TLR4(-/-) mice also exhibited higher lipid levels in circulation and skeletal muscle after fasting and reversed expression of lipogenic enzymes in skeletal muscle but not liver and adipose tissue. Adipose tissue lipolysis is normal and muscle fatty acid oxidation is increased in TLR4(-/-) mice after fasting. Inhibition of fatty acid synthesis in TLR4(-/-) mice abolished hyperlipidemia, hypoglycemia, and PDC activity increase, suggesting that TLR4-dependent inhibition of muscle lipogenesis may contribute to glucose and lipid homeostasis during fasting. Further studies showed that TLR4 deficiency had no effect on insulin signaling and muscle proinflammatory cytokine production in response to fasting.
Conclusions: These data suggest that TLR4 plays a critical role in glucose and lipid metabolism independent of insulin during fasting and identify a novel physiological role for TLR4 in fuel homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992764 | PMC |
http://dx.doi.org/10.2337/db10-0418 | DOI Listing |
Biochem Pharmacol
January 2025
Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan. Electronic address:
Sepsis is a life-threatening condition caused by severe infection and often complicates acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) due to the collapse of the oxidative and inflammatory balance induced by microbial pathogens, including lipopolysaccharides (LPS). In sepsis-related ARDS/ALI, NADPH oxidase (NOX) and toll-like receptors (TLR) in neutrophils and macrophages are key players in initiating oxidative and inflammatory imbalances. Although NOX and TLR activation has been linked to carbon monoxide (CO), the mechanism by which CO affects sepsis-related ARDS/ALI through NOX and TLR remains unknown.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Basic Medicine, Ningxia Medical University, Yinchuan, People's Republic of China.
Background: Colorectal cancer (CRC) is a highly malignant and aggressive gastrointestinal tumor. Due to its weak immunogenicity and limited immune, cell infiltration lead to ineffective clinical outcomes. Therefore, to improve the current prophylaxis and treatment scheme, offering a favorable strategy efficient against CRC is urgently needed.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224 Taiwan. Electronic address:
Metabolic-associated fatty liver disease (MAFLD) has emerged as a leading chronic liver disease. This condition is characterized by an abnormal accumulation of fat within liver and can progress from simple steatosis to more severe stages involving chronic inflammation and oxidative stress. In this study, we investigated the potential therapeutic effects and underlying mechanism of novel bioactive peptides (EWYF and EWFY) on Western diet-induced MAFLD in C57BL/6J mice.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Department of Orthopedics, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China.
Osteoarthritis (OA) is a common degenerative bone and joint disease with an unclear pathogenesis. Our study identified that the histone acetyltransferase encoded by Kat7 is upregulated in the affected articular cartilage of OA patients and in a mice model of medial meniscal instability-induced OA. Chondrocyte-specific knockdown of Kat7 expression exhibited a protective effect on articular cartilage integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!