Background: Remote control of esophageal capsule endoscopes could enhance diagnostic accuracy.

Objective: To assess the safety and efficacy of remote magnetic manipulation of a modified capsule endoscope (magnetic maneuverable capsule [MMC]; Given Imaging Ltd, Yoqneam, Israel) in the esophagus of healthy humans.

Design: Randomized, controlled trial.

Setting: Academic hospital.

Patients: This study involved 10 healthy volunteers.

Intervention: All participants swallowed a conventional capsule (ESO2; Given Imaging) and a capsule endoscope with magnetic material, the MMC, which is activated by a thermal switch, in random order (1 week apart). An external magnetic paddle (EMP; Given Imaging) was used to manipulate the MMC within the esophageal lumen. MMC responsiveness was evaluated on a screen showing the MMC film in real time.

Main Outcome Measurements: Safety and tolerability of the procedure (questionnaire), responsiveness of the MMC to the EMP, esophageal transit time, and visualization of the Z-line.

Results: No adverse events occurred apart from mild retrosternal pressure (n = 5). The ability to rotate the MMC around its longitudinal axis and to tilt it by defined movements of the EMP was clearly demonstrated in 9 volunteers. Esophageal transit time was highly variable for both capsules (MMC, 111-1514 seconds; ESO2, 47-1474 seconds), but the MMC stayed longer in the esophagus in 8 participants (P < .01). Visualization of the Z-line was more efficient with the ESO2 (inspection of 73% ± 18% of the circumference vs 33% ± 27%, P = .01).

Limitations: Magnetic forces were not strong enough to hold the MMC against peristalsis when the capsule approached the gastroesophageal junction.

Conclusion: Remote control of the MMC in the esophagus of healthy volunteers is safe and feasible, but higher magnetic forces may be needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gie.2010.06.053DOI Listing

Publication Analysis

Top Keywords

capsule endoscope
12
mmc
10
remote magnetic
8
safe feasible
8
healthy volunteers
8
remote control
8
endoscope magnetic
8
esophagus healthy
8
esophageal transit
8
transit time
8

Similar Publications

Reducing reading time and assessing disease in capsule endoscopy videos: A deep learning approach.

Int J Med Inform

January 2025

University of Coimbra, Faculty of Medicine, Coimbra, Portugal; Department of Gastroenterology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal. Electronic address:

Background: The wireless capsule endoscope (CE) is a valuable diagnostic tool in gastroenterology, offering a safe and minimally invasive visualization of the gastrointestinal tract. One of the few drawbacks identified by the gastroenterology community is the time-consuming task of analyzing CE videos.

Objectives: This article investigates the feasibility of a computer-aided diagnostic method to speed up CE video analysis.

View Article and Find Full Text PDF

Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.

Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).

View Article and Find Full Text PDF

Background: Craniopharyngiomas are epithelial tumors derived from the remnants of the Rathke pouch, while Rathke cleft cysts (RCC) are benign cystic lesions originating from the Rathke pouch itself [1]. Rathke cleft cysts comprise 10-15% of the hypophyseal tumors, while craniopharyngiomas are relatively rare, comprising only 2-5% of intracranial tumors [2]. Both located in the sellar and parasellar regions and share clinical symptoms including headache, visual disturbances, and endocrine dysfunction [3].

View Article and Find Full Text PDF

Wide FOV metalens for near-infrared capsule endoscopy: advancing compact medical imaging.

Nanophotonics

November 2024

National Key Laboratory on Near-Surface Detection, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

This study presents the design, fabrication, and characterization of a wide field-of-view (FOV) metalens optimized for capsule endoscopy. The metalens achieved a 165° FOV with a high modulation transfer function (MTF) of 300 lines per millimeter (lp/mm) across the entire FOV, operating in the near-infrared (NIR) narrow-bandpass imaging at 940 nm. The performance of the metalens-based system is evaluated using two bandwidths, 12 nm and 32 nm, showing MTF values of 0.

View Article and Find Full Text PDF

The living human inner ear is challenging to study because it is encased within dense otic capsule bone that limits access to biological tissue. Traditional temporal bone histopathology methods rely on lengthy, expensive decalcification protocols that take 9-10 months and reduce the types of tissue analysis possible due to RNA degradation. There is a critical need to develop methods to access fresh human inner ear tissue to better understand otologic diseases, such as Ménière's disease, at the cellular and molecular level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!