Background & Aims: Gastric cancer evolves in the setting of a pathologic mucosal milieu characterized by both loss of acid-secreting parietal cells and mucous cell metaplasias. Indeed, mucous cell metaplasia is considered the critical preneoplastic lesion for gastric cancer. Previous investigations have shown that infection of mice with Helicobacter felis or induction of acute parietal cell loss with the drug DMP-777 leads to the emergence of a type of metaplasia designated spasmolytic polypeptide-expressing metaplasia (SPEM). We have hypothesized that SPEM arises from proliferating cells in gland bases, either from a cryptic progenitor cell or by transdifferentiation of mature chief cells.
Methods: Taking advantage of the chief cell-restricted expression of Mist1-Cre-ER(T2), we used lineage mapping to examine whether SPEM lineages were derived from chief cells in 3 independent models of induction by DMP-777 treatment, L-635 treatment, or H felis infection.
Results: Treatment of mice with L-635 for 3 days led to rapid parietal cell loss, induction of a prominent inflammatory infiltrate, and emergence of SPEM. In all 3 models, SPEM developed, at least in part, from transdifferentiation of chief cells. We further found that acute parietal cell loss in the setting of inflammation (L-635 treatment) led to more rapid induction and expansion of SPEM derived from transdifferentiation of chief cells.
Conclusions: These studies provide direct evidence by lineage tracing that SPEM evolves from differentiated chief cells. Thus, mature gastric chief cells have the ability to act as cryptic progenitors and reacquire proliferative capacity within the context of mucosal injury and inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997152 | PMC |
http://dx.doi.org/10.1053/j.gastro.2010.09.005 | DOI Listing |
Am J Sports Med
January 2025
Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA.
Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.
Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.
Cell Death Differ
January 2025
Dana Farber Cancer Institute, Boston, MA, USA.
Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.
Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.
Arch Dermatol Res
January 2025
Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
Background: Although the precise cause of the co-occurrence of pyoderma gangrenosum (PG) and inflammatory bowel disease (IBD) is still unknown, prior research has shown that the two conditions coexist. Moreover, it is currently unknown how immune cells function in influencing the relationship between IBD and PG.
Methods: In order to choose independent single nucleotide polymorphism (SNP) as instrumental variables, we were provided with genome-wide association study (GWAS) summary data of European populations from the IEU OpenGWAS project (for IBD) and a the FinnGen database (for PG) publically available.
iScience
November 2024
Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL, USA.
Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been shown to synergize with proteasome inhibitors (PIs) in reducing the viability of cells derived from B cell malignancies, but the mechanism is not known. We report here that an off-target effect of ibrutinib causes synergy because not all BTK inhibitors exhibited the synergistic effect, and those that synergized did so even in cells that do not express BTK. The allosteric BTK inhibitor CGI-1746 showed the strongest synergy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!