Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection.

BMC Microbiol

Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078, USA.

Published: September 2010

Background: Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection.

Results: We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM) to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray slides. A total of 784 (mock treated) and 901 (CAM treated) THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold), eliminated the common gene expression changes. A stringent comparison (≥2 fold) between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis.

Conclusions: Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the pathogen whether or not it is actively synthesizing proteins. These findings indicate that C. burnetii modulates the host cell gene expression to avoid the immune response, preserve the host cell from death, and direct the development and maintenance of a replicative PV by controlling vesicle formation and trafficking within the host cell during infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954873PMC
http://dx.doi.org/10.1186/1471-2180-10-244DOI Listing

Publication Analysis

Top Keywords

host cell
36
gene expression
16
burnetii protein
16
cell genes
16
protein synthesis
12
cell
11
host
10
burnetii
10
coxiella burnetii
8
cell gene
8

Similar Publications

Background And Aims: Hematopoietic stem cell transplantation (HSCT) is a key therapeutic approach for pediatric patients with hematologic and non-hematologic disorders. However, post-transplant pulmonary complications remain a significant cause of morbidity and mortality. Pulmonary Function Tests (PFTs) are essential for the early detection of pulmonary dysfunction, yet their application in pediatric HSCT recipients has yielded inconsistent results.

View Article and Find Full Text PDF

Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues.

View Article and Find Full Text PDF

Gut mycobiome and neuropsychiatric disorders: insights and therapeutic potential.

Front Cell Neurosci

January 2025

Reserach Unit "Drosophila"UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia.

Background: The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders.

Objective: This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy.

View Article and Find Full Text PDF

Introduction: An effective vaccination policy must be implemented to prevent foot-and-mouth disease (FMD). However, the currently used vaccines for FMD have several limitations, including induction of humoral rather than cellular immune responses.

Methods: To overcome these shortcomings, we assessed the efficacy of levamisole, a small-molecule immunomodulator, as an adjuvant for the FMD vaccine.

View Article and Find Full Text PDF

Introduction: /GI.1 and GI.2 cause severe Rabbit Haemorrhagic Disease, and immune processes are among the important pathomechanisms of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!