Two toxic-unit models that estimate the toxicity of trace-metal mixtures to benthic communities were compared. The chronic criterion accumulation ratio (CCAR), a modification of biotic ligand model (BLM) outputs for use as a toxic-unit model, accounts for the modifying and competitive influences of major cations (Ca²(+), Mg²(+), Na(+), K(+), H(+)), anions (HCO₃⁻, CO²⁻₃ ,SO²⁻₄, Cl⁻, S²⁻) and dissolved organic carbon (DOC) in determining the free metal ion available for accumulation on the biotic ligand. The cumulative criterion unit (CCU) model, an empirical statistical model of trace-metal toxicity, considers only the ameliorative properties of Ca²(+) and Mg²(+) (hardness) in determining the toxicity of total dissolved trace metals. Differences in the contribution of a metal (e.g., Cu, Cd, Zn) to toxic units as determined by CCAR or CCU were observed and attributed to how each model incorporates the influences of DOC, pH, and alkalinity. Akaike information criteria demonstrate that CCAR is an improved predictor of benthic macroinvertebrate community metrics as compared with CCU. Piecewise models depict great declines (thresholds) in benthic macroinvertebrate communities at CCAR of 1 or more, while negative changes in benthic communities were detected at a CCAR of less than 1. We observed a 7% reduction in total taxa richness and a 43% decrease in Heptageniid abundance between background (CCAR = 0.1) and the threshold of chronic toxicity on the basis of continuous chronic criteria (CCAR = 1). In this first application of the BLM as a toxic-unit model, we found it superior to CCU.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/etc.302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!