The relative rate technique has been used to determine the rate constants of the reactions of OH radicals with CF(3)CCl=CCl(2) (k(1)), CF(3)CCl=CClCF(3) (k(2)) and CF(3)CF=CFCF(3) (k(3)). Experiments were carried out at (298±2) K and atmospheric pressure using ultrapure nitrogen as gas bath. The decay rates of the organic species were measured relative to those of ethane, methanol, acetone, chloroethane and 2-butanone. The following rate constants were derived in units of cm(3) molecule(-1) s(-1): k(1)= (10±1)×10(-13), k(2)=(2.1±0.2)×10(-13) and k(3)=(3.7±0.2)×10(-13). This is the first experimental determination of k(1) and k(2). The rate constants obtained are compared with previous literature data to establish reactivity trends and are used to estimate the atmospheric lifetimes of the studied perhaloalkenes. From the calculated lifetimes, using an average global concentration of hydroxyl radicals, the atmospheric loss of these compounds by the OH-initiated oxidation was determined. Also, estimations have been made of the ozone depletion potential (ODP), the radiative forcing efficiency (RE), the halocarbon global warming potential (HGWP) and the global warming potential (GWP) of the perhaloalkenes. The approximate nature of these values is stressed considering that these are short-lived compounds for which these atmospheric parameters may vary according to latitude and season.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201000430 | DOI Listing |
Sci Rep
December 2024
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
A cost-effective industrial TiOSO solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO was systematically investigated. Successful incorporation of sulfur into TiO was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS).
View Article and Find Full Text PDFArthroscopy
December 2024
Orthopaedic and Traumatology Unit, Ospedale Regionale di Lugano, EOC, 6900, Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Via Buffi 13, 6900, Lugano, Switzerland.
Purpose: The aim of this study was to compare the safety and efficacy of immobilizing the upper limb with a brace versus a less-constrained sling in the rehabilitation after arthroscopic rotator cuff repair (ARCR), by documenting clinical and radiological results.
Methods: ARCR was performed in 110 patients (54.9±8.
J Mech Behav Biomed Mater
December 2024
Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany. Electronic address:
The mechanical properties of brain and spinal cord tissue have proven to be extremely complex and difficult to assess. Due to the heterogeneous and ultra-soft nature of the tissue, the available literature shows a large variance in mechanical parameters derived from experiments. In this study, we performed a series of indentation experiments to systematically investigate the mechanical properties of porcine spinal cord tissue in terms of their sensitivity to indentation tip diameter, loading rate, holding time, ambient temperature along with cyclic and oscillatory dynamic loading.
View Article and Find Full Text PDFBMC Health Serv Res
December 2024
Western Sydney University, School of Computer, Data and Mathematical Sciences, Sydney, Australia.
Background: China is currently at a turning point as its total population has started to decline, and therefore faces issues related to caring for an ageing population, which will require an increase in Total Health Expenditure (THE). Therefore, the ability to forecast China's future THE is essential.
Methods: We developed two THE System Dynamics (SD) models using Stella Architect 3.
Sci Rep
December 2024
Multi-Modality Medical Imaging (M3I), TechMed Centre, University of Twente, Technohal 2384,Drienerolaan 5, Enschede, 7522NB, The Netherlands.
Vaginal pessaries have been used for millennia to alleviate symptoms of pelvic organ prolapse (POP). Despite their long-standing use, the success rate of pessary treatment is approximately 60%, and the underlying mechanisms of support are not well understood. This study aims to investigate three previously proposed hypotheses regarding the support mechanisms of pessaries, utilizing supine and upright magnetic resonance imaging (MRI): (1) support by bony structures, (2) support by levator ani muscles (LAM), and (3) the uterus keeping the pessary in place by acting as a lever.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!