Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A field survey of the seasonal variation of microcystin (MC) concentration was performed in Gonghu Bay (a total of 15 sampling sites) of Lake Taihu from January to December 2008. Microcystis spp. biomass and intra-/extracellular MCs were significantly correlated with water temperature, suggesting the importance of temperature in cyanobacterial blooming in the lake. Higher MC concentration was found in summer and autumn, and peaks of Microcystis biomass and intra-/extracellular MC concentrations were all present in October. Spatially, risk of MCs was higher in littoral zones than in the pelagic area. There were significant correlations between N or P concentrations, and Microcystis biomass or MC content, suggesting that N and P levels affected MC production through influencing Microcystis biomass. Intra-/extracellular MCs and Microcystis biomass had negative exponential relationships with TN:TP, and the maximum values all occurred when TN:TP was <25. Multivariate analyses by PCCA indicated that intra- and extracellular MC concentrations had better correlations with biological factors (such as Microcystis biomass and chl-a) than with physicochemical factors. The maximum MC concentration reached up to 17 micrograms/L MC-LReq, considerably higher than the drinking water safety standard (1 micrograms/L) recommended by the WHO. So it is necessary to take measures to reduce the exposure risk of cyanobacterial toxins to human beings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763806 | PMC |
http://dx.doi.org/10.1100/tsw.2010.172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!