Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To determine the effects of probe orientation on the accuracy of intraocular pressure (IOP) measurements obtained with pneumatonometry (Model 30 Classic Pneumatonometer, Reichert Ophthalmic Instruments, Depew, NY) and with a handheld electronic tonometer (Tono-Pen XL, Reichert Ophthalmic Instruments, Depew, NY).
Materials And Methods: Six enucleated human eyes were obtained fewer than 24 hours postmortem. IOP was maintained at 10, 20, and 30 mm Hg, sequentially, via liquid column manometry. At each IOP setpoint, the eyes were positioned to mimic a sitting, supine, and prone patient. Pneumatonometry was performed in the sitting and supine orientations. Tono-Pen measurements were performed in the sitting, supine, and prone orientations. Accuracy was analyzed using multifactor repeated measures analysis of variance, and one-sample t tests.
Results: At all IOP setpoints, for both instruments, probe orientation had no significant effect on the IOP measurement (pneumatonometer P=0.58; Tono-Pen P=0.85). At all 3 setpoints (10, 20, and 30 mm Hg) the pneumatonometer overestimated IOP (P<0.0001; P<0.0001; P=0.005, respectively). The Tono-Pen overestimated IOP at the 10 mm Hg setpoint (P<0.0001), but underestimated IOP at the 20 and 30 mm Hg setpoints (P=0.03; P<0.0001, respectively).
Conclusions: Under experimental conditions, probe orientation had no significant effect on IOP measurements for either instrument, suggesting that both can be used without correction in the tested orientations. In enucleated human cadaveric eyes, the pneumatonometer overestimated IOP at all setpoints. The handheld electronic tonometer overestimated IOP at 10 mm Hg, but underestimated IOP at the higher setpoints. It is unknown if these findings are generalizable to human eyes in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/IJG.0b013e3181f46324 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!