New insights into the fructosyltransferase activity of Schwanniomyces occidentalis ß-fructofuranosidase, emerging from nonconventional codon usage and directed mutation.

Appl Environ Microbiol

Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma Madrid, Cantoblanco, 28049 Madrid, Spain.

Published: November 2010

Schwanniomyces occidentalis β-fructofuranosidase (Ffase) releases β-fructose from the nonreducing ends of β-fructans and synthesizes 6-kestose and 1-kestose, both considered prebiotic fructooligosaccharides. Analyzing the amino acid sequence of this protein revealed that it includes a serine instead of a leucine at position 196, caused by a nonuniversal decoding of the unique mRNA leucine codon CUG. Substitution of leucine for Ser196 dramatically lowers the apparent catalytic efficiency (k(cat)/K(m)) of the enzyme (approximately 1,000-fold), but surprisingly, its transferase activity is enhanced by almost 3-fold, as is the enzymes' specificity for 6-kestose synthesis. The influence of 6 Ffase residues on enzyme activity was analyzed on both the Leu196/Ser196 backgrounds (Trp47, Asn49, Asn52, Ser111, Lys181, and Pro232). Only N52S and P232V mutations improved the transferase activity of the wild-type enzyme (about 1.6-fold). Modeling the transfructosylation products into the active site, in combination with an analysis of the kinetics and transfructosylation reactions, defined a new region responsible for the transferase specificity of the enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976189PMC
http://dx.doi.org/10.1128/AEM.01614-10DOI Listing

Publication Analysis

Top Keywords

schwanniomyces occidentalis
8
transferase activity
8
insights fructosyltransferase
4
activity
4
fructosyltransferase activity
4
activity schwanniomyces
4
occidentalis ß-fructofuranosidase
4
ß-fructofuranosidase emerging
4
emerging nonconventional
4
nonconventional codon
4

Similar Publications

Insights into the transglucosylation activity of α-glucosidase from Schwanniomyces occidentalis.

Appl Microbiol Biotechnol

August 2024

Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain.

The α-glucosidase from Schwanniomyces occidentalis (GAM1p) was expressed in Komagataella phaffii to about 70 mg/L, and its transferase activity studied in detail. Several isomaltooligosaccharides (IMOS) were formed using 200 g/L maltose. The major production of IMOS (81.

View Article and Find Full Text PDF

Laser-assisted bioprinting of microbial cells by hydrogel microdroplets is a rapidly developing and promising field that can contribute to solving a number of issues in microbiology and biotechnology. To date, most research on the use of laser bioprinting for microorganism manipulation and sorting has focused on prokaryotes; the bioprinting of eukaryotic microorganisms is much less understood. The use of hydrogel allows solving two fundamental problems: creating comfortable environments for living microorganisms and imparting the necessary rheological properties of the gel for the stable transfer of microdroplets of a preset size.

View Article and Find Full Text PDF

Zymomonas mobilis ZM4 is an attractive host for the development of microbial cell factories to synthesize high-value compounds, including prebiotics. In this study, a straightforward process to produce fructooligosaccharides (FOS) from sucrose was established. To control the relative FOS composition, recombinant Z.

View Article and Find Full Text PDF

Enzymatic synthesis of novel fructosylated compounds by Ffase from in green solvents.

RSC Adv

July 2021

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC) 50009 Zaragoza Spain

The β-fructofuranosidase from the yeast (Ffase) produces potential prebiotic fructooligosaccharides (FOS) by self-transfructosylation of sucrose, being one of the highest known producers of 6-kestose. The use of Green Solvents (GS) in biocatalysis has emerged as a sustainable alternative to conventional organic media for improving product yields and generating new molecules. In this work, the Ffase hydrolytic and transfructosylating activity was analysed using different GS, including biosolvents and ionic liquids.

View Article and Find Full Text PDF

New insights into the molecular mechanism behind mannitol and erythritol fructosylation by β-fructofuranosidase from Schwanniomyces occidentalis.

Sci Rep

March 2021

Centro de Biología Molecular Severo Ochoa (CBMSO; UAM-CSIC), Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049, Madrid, Spain.

The β-fructofuranosidase from Schwanniomyces occidentalis (Ffase) is a useful biotechnological tool for the fructosylation of different acceptors to produce fructooligosaccharides (FOS) and fructo-conjugates. In this work, the structural determinants of Ffase involved in the transfructosylating reaction of the alditols mannitol and erythritol have been studied in detail. Complexes with fructosyl-erythritol or sucrose were analyzed by crystallography and the effect of mutational changes in positions Gln-176, Gln-228, and Asn-254 studied to explore their role in modulating this biocatalytic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!