Advances in on-line drinking water quality monitoring and early warning systems.

Water Res

Customer Strategy and Planning, Sydney Water, Parramatta, NSW, Australia.

Published: January 2011

Significant advances have been made in recent years in technologies to monitor drinking water quality for source water protection, treatment operations, and distribution system management, in the event of accidental (or deliberate) contamination. Reports prepared through the Global Water Research Coalition (GWRC) and United States Environment Protection Agency (USEPA) agree that while many emerging technologies show promise, they are still some years from being deployed on a large scale. Further underpinning their viability is a need to interpret data in real time and implement a management strategy in response. This review presents the findings of an international study into the state of the art in this field. These results are based on visits to leading water utilities, research organisations and technology providers throughout Europe, the United States and Singapore involved in the development and deployment of on-line monitoring technology for the detection of contaminants in water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2010.08.049DOI Listing

Publication Analysis

Top Keywords

drinking water
8
water quality
8
united states
8
water
6
advances on-line
4
on-line drinking
4
quality monitoring
4
monitoring early
4
early warning
4
warning systems
4

Similar Publications

Introduction: Prior research shows that in-person exposure to electronic nicotine delivery systems (ENDS) use increases desire for cigarettes and ENDS. However, less is known about the impact of cues delivered during remote interactions. This study extends previous in-person cue work by leveraging a remote confederate-delivered cue-delivery paradigm to evaluate the impact of dual nicotine vaping (vs.

View Article and Find Full Text PDF

Functionalized polymer membrane electrodes based multichannel sensor is used as an electronic tongue to monitor the drinking water (DW) quality simply by measuring the surface electric potential with respect to Ag/AgCl reference electrode in 1 mM aqueous KCl. Changes of minute concentration of dissolved minerals greatly affected the surface potential of the sensor. The three-channel sensor device (electronic tongue) is made by using three different functionalized polymer membrane electrodes, namely, phosphorylated hexadecyl trimethyl ammonium chloride modified polyvinyl alcohol-polyacrylic acid membrane; phosphorylated and crosslinked polyvinyl--ethylene membrane; phosphorylated and crosslinked polyvinyl alcohol membrane, as working electrodes and a Ag/AgCl reference electrode.

View Article and Find Full Text PDF

The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated.

View Article and Find Full Text PDF

A wide range of pollutants, including heavy metals, endocrine-disrupting chemicals (EDCs), residual pesticides, and pharmaceuticals, are present in various water systems, many of which strongly drive the proliferation and dissemination of antimicrobial resistance genes (ARGs), heightening the antimicrobial resistance (AMR) crisis and creating a critical challenge for environmental and health management worldwide. This study addresses the impact of anthropogenic pollutants on AMR through an extensive analysis of ARGs and mobile genetic elements (MGEs) in urban wastewater, source water, and drinking water supplies in India. Results indicated that bla and bla were the dominant ARGs across all water systems, underscoring the prevalence and dominance of resistance against β-lactam antibiotics.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of thyme oil (TO), chitosan nanoparticles (CS-NPs), and TO-loaded-CS-NPs on controlling Salmonella Typhimurium (S. Typhimurium) infection in broiler chickens when compared to ciprofloxacin (Cip) antibiotic treatment. The CS-NPs and TO-loaded-CS-NPs were initially characterized using a transmission electron microscope.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!