The role of caspase-1 in inflammation has been studied intensely over recent years. However, the research of caspase-1 has remained difficult mainly due to the lack of sensitive and selective tools to monitor not only its abundance but also its activity. Here we present a bioluminescent activity-based probe (ABP) for caspase-1, developed by the Reverse Design concept, where chemically optimized protease inhibitors are turned into selective substrate ABPs. The probe exhibits excellent selectivity for caspase-1 and ∼1000-fold increase in sensitivity compared to available fluorogenic peptidic caspase-1 substrates. Moreover, we have been able to monitor and quantify specific caspase-1 activity directly in cell lysates. The activity correlated well with processing of prointerleukin-1β and prointerleukin-18 in phorbol 12-myristate 13-acetate (PMA)-stimulated cells. A detectable caspase-1 activity was present also in nonstimulated cells, consistent with processing of constitutively expressed prointerleukin-18.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chembiol.2010.07.011 | DOI Listing |
Int Immunopharmacol
January 2025
Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil; Center of Toxins, Cell Signaling and Immune Response (CeTICS), CEPID, FAPESP, Brazil. Electronic address:
The complement system plays a crucial role in various pathophysiological conditions, including snake envenomation. In this study, we investigated the effects of Bitis arietans venom on the complement system using an ex vivo human whole blood model. Our findings demonstrate that B.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.
Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea.
Activating the pyroptosis pathway of tumor cells by photodynamic therapy (PDT) for immunogenic cell death (ICD) is considered a valid strategy in pursuit of antitumor immunotherapy, but it remains a huge challenge due to the lack of reliable design guidelines. Moreover, it is often overlooked that conventional PDT can exacerbate the development of tumor immunosuppressive microenvironment, which is apparently unfavorable to clinical immunotherapy. The endoplasmic reticulum's (ER) pivotal role in cellular homeostasis and its emerging link to pyroptosis have galvanized interest in ER-centric imaging and therapeutics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Materials Science and Engineering, CHINA.
Camptothecin (CPT), a chemotherapeutic agent, demonstrates significant potential in cancer therapy. However, as a drug, CPT molecule suffers from poor water solubility, limited bioavailability, and insufficient immune response. Herein, we construct CPT nanofibers (CNF) with a right-handed chiral property via supramolecular self-assembly, which significantly overcomes the solubility barriers associated with bioavailability and improves tumor immune prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!