Aims: Atrial fibrillation (AF) leads to electrical atrial remodeling including alterations of various ion channels early after arrhythmia onset. The beneficial effects of statins in AF treatment due to their influence on oxidative stress and inflammation are discussed. Our hypothesis was that statins might also alter atrial ion currents and their early tachycardia-induced remodeling.

Main Methods: Effects of an atorvastatin treatment (7 days) on atrial ion currents and their tachycardia-induced alterations were studied in a rabbit model of tachycardia-induced electrical remodeling (rapid atrial pacing (600 min) for 24 and 120 h). Ion currents (L-type calcium channel [I(Ca,L)], transient outward current [I(to)]) were measured using whole cell patch clamp method and were compared with previous experiments in untreated but also tachypaced animals.

Key Findings: Atorvastatin treatment alone decreased I(Ca,L) similar to rapid atrial pacing alone, currents were also further reduced by additional atrial tachypacing. I(to) and its pacing-induced down-regulation after 24 h were not influenced by atorvastatin treatment. However, I(to) was still reduced after 120 h in atorvastatin-treated animals and did not return to control values as expected.

Significance: The present study establishes that an atorvastatin treatment can affect atrial ion currents and their tachycardia-induced remodeling in a rabbit model. These results show that-amongst other positive effects on oxidative stress and inflammation-the impact of statins on ion currents and their tachycardia-induced alterations might also play a role in "upstream" treatment of AF with HMG-CoA reductase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2010.09.010DOI Listing

Publication Analysis

Top Keywords

ion currents
24
atorvastatin treatment
20
atrial ion
16
currents tachycardia-induced
16
atrial
9
tachycardia-induced remodeling
8
oxidative stress
8
tachycardia-induced alterations
8
rabbit model
8
rapid atrial
8

Similar Publications

Objective: Cystic fibrosis (CF) is a clinical entity defined by aberrant chloride (Cl) ion transport causing downstream effects on mucociliary clearance (MCC) in sinonasal epithelia. Inducible deficiencies in transepithelial Cl transport via CF transmembrane conductance regulator (CFTR) has been theorized to be a driving process in recalcitrant chronic rhinosinusitis (CRS) in patients without CF. We have previously identified that brief exposures to bacterial lipopolysaccharide (LPS) in mammalian cells induces an acquired dysfunction of CFTR in vitro and in vivo.

View Article and Find Full Text PDF

Remaining useful life (RUL) prediction is a crucial aspect of the prognostics health management of lithium-ion batteries (LIBs). Owing to the influence of resampling technology, particle degradation is often observed in the particle filter-based RUL prediction of LIBs, resulting in a low prediction accuracy and large uncertainty. In this paper, a novel particle flow filter with the grey model method (GM-PFF) is proposed to forecast the RUL and state of health of batteries.

View Article and Find Full Text PDF

TET1 participates in oxaliplatin-induced neuropathic pain by regulating microRNA-30b/Nav1.6.

J Biol Chem

January 2025

Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; School of Nursing and Health, Zhengzhou University, 100 Science venue, Zhengzhou, 450001, China. Electronic address:

Chemotherapy-induced neuropathic pain poses significant clinical challenges and severely impacts patient quality of life. Sodium ion channels are crucial in regulating neuronal excitability and pain. Our research indicates that the microRNA-30b (miR-30b) in rat dorsal root ganglia (DRG) contributes to chemotherapy-induced neuropathic pain by regulating the Nav1.

View Article and Find Full Text PDF

Electrocatalytic synergy from Ni-enhanced WS for alkaline overall water splitting with tuning electronic structure and crystal phase transformation.

J Colloid Interface Sci

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China. Electronic address:

Due to the limited active sites and poor conductivity, the application of tungsten disulfide (WS) in alkaline water electrolysis remains a challenge. Herein, Ni-WS nanosheet arrays were in situ grown on the carbon fiber paper (Ni-WS/CFP) as an electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, and the introduction degree of Ni can be regulated by adjusting the electrodeposition time. When the electrodeposition time is 3 min, Ni ions are doped into the lattice of WS, and by prolonging the electrodeposition time to 10 min, the nickel disulfide (NiS) crystal phase is generated to form NiS@WS heterojunction.

View Article and Find Full Text PDF

As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!