The initiation of mammalian puberty requires a sustained increase in pulsatile release of gonadotrophin releasing hormone (GnRH) from the hypothalamus. This increase is brought about by coordinated changes in transsynaptic and glial-neuronal communication, consisting of an increase in neuronal and glial stimulatory inputs to the GnRH neuronal network and the loss of transsynaptic inhibitory influences. GnRH secretion is stimulated by transsynaptic inputs provided by excitatory amino acids (glutamate) and at least one peptide (kisspeptin), and by glial inputs provided by growth factors and small bioactive molecules. The inhibitory input to GnRH neurons is mostly transsynaptic and provided by GABAergic and opiatergic neurons; however, GABA has also been shown to directly excite GnRH neurons. There are many genes involved in the control of these cellular networks, and hence in the control of the pubertal process as a whole. Our laboratory has proposed the concept that these genes are arranged in overlapping networks internally organized in a hierarchical fashion. According to this concept, the highest level of intra-network control is provided by transcriptional regulators that, by directing expression of key subordinate genes, impose genetic coordination to the neuronal and glial subsets involved in initiating the pubertal process. More recently, we have begun to explore the concept that a more dynamic and encompassing level of integrative coordination is provided by epigenetic mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992593 | PMC |
http://dx.doi.org/10.1016/j.brainres.2010.09.039 | DOI Listing |
J Neurochem
January 2025
Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China.
Aims: The comorbidity of anxiety-like symptoms in neuropathic pain (NP) is a significant yet often overlooked health concern. Anxiety sufferers may have a lower tolerance for pain, but which is difficult to treat. Accumulating evidence suggests a strong link between astrocytes and the manifestation of NP with concurrent anxiety-like behaviors.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
Neurons derived from induced pluripotent stem cells (h-iPSC-Ns) provide an invaluable model for studying the physiological aspects of human neuronal development under healthy and pathological conditions. However, multiple studies have demonstrated that h-iPSC-Ns exhibit a high degree of functional and epigenetic diversity. Due to the imprecise characterization and significant variation among the currently available maturation protocols, it is essential to establish a set of criteria to standardize models and accurately characterize and define the developmental properties of human neurons derived from iPSCs.
View Article and Find Full Text PDFCell Discov
January 2025
Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.
Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C (dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages (3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States.
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!