A conserved threonine found in the majority of cytochromes P450 (P450s) has been implicated in the activation of dioxygen during the catalytic cycle. P450(cin) (CYP176A) has been found to be an exception to this paradigm, where the conserved threonine has been replaced with an asparagine. Prior studies with a P450(cin) N242A mutant established that the Asn-242 was not a functional replacement for the conserved threonine but was essential for the regio- and stereocontrol of the oxidation of cineole. To explore further how P450(cin) controls the activation of the dioxygen in the absence of the conserved threonine, two concurrent lines of investigation were followed. Modification of P450(cin) indicated that the Thr-243 was not involved in controlling the protonation of the hydroperoxy species. In addition, the N242T mutant did not enhance the rate and/or efficiency of catalytic turnover of cineole by P450(cin). In parallel experiments, the substrate cineole was modified by removing the ethereal oxygen to produce camphane or 2,2-dimethylbicyclo[2.2.2]octane (cinane). An analogous experiment with P450(EryF) showed that a hydroxyl group on the substrate was vital, and in its absence catalytic turnover was effectively abolished. Catalytic turnover of P450(cin) with either of these alternative substrates (camphane or cinane) revealed that in the absence of the ethereal oxygen there was still a significant amount of coupling of the NADPH-reducing equivalents to the formation of oxidised product. Again the substrate itself was not found to be important in controlling oxygen activation, in contrast to P450(EryF), but was shown to be essential for regio- and stereoselective substrate oxidation. Thus, it still remains unclear how dioxygen activation in the catalytic turnover of cineole by P450(cin) is controlled.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2010.09.009DOI Listing

Publication Analysis

Top Keywords

conserved threonine
16
catalytic turnover
16
oxygen activation
8
p450cin
8
activation dioxygen
8
essential regio-
8
turnover cineole
8
cineole p450cin
8
ethereal oxygen
8
substrate
5

Similar Publications

Signaling pathways play key roles in many important biological processes such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. Use of phospho-specific antibodies facilitates analysis of signaling pathway regulation and activity.

View Article and Find Full Text PDF

Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton.

Physiol Plant

January 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.

Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) are a class of highly conserved serine/threonine-protein kinases in eukaryotes. They participate in the typical MAPK cascade system and various signal transduction pathways regulating biological processes in plants, during stressful conditions. To date, genome-wide identification of MAP4Ks in cotton has not been reported.

View Article and Find Full Text PDF

The role of SGK1 in neurologic diseases: A friend or foe?

IBRO Neurosci Rep

December 2024

Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China.

Serum and glucocorticoid-regulated kinase 1 (SGK1), a member of the AGC family of serine/threonine protein kinases, is one of the most conserved protein kinases in eukaryotic evolution. SGK1 is expressed to varying degrees in various types of cells throughout the body, and plays an important role in hypertension, ion channels, oxidative stress, neurological disorders, and cardiovascular regulation. In recent years, a number of scholars have devoted themselves to the study of the role and function of SGK1 in neurological diseases.

View Article and Find Full Text PDF

The chloride transporter-channel SLC26A9 is mediated by a reciprocal regulatory mechanism through the interaction between its cytoplasmic STAS domain and the R domain of CFTR. In vertebrate Slc26a9s, the STAS domain structures are interrupted by a disordered loop which is conserved in mammals but is variable in non-mammals. Despite the numerous studies involving the STAS domains in SLC26 proteins, the role of the disordered loop region has not been identified.

View Article and Find Full Text PDF

Tousled-like kinases 1 and 2 (TLK1 and 2) are cell cycle-regulated serine/threonine kinases that are involved in multiple biological processes. Mutation of TLK1 and 2 confer neurodegenerative diseases. Recent studies demonstrate that TLK1 and 2 are involved in DNA repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!