Bacopa monnieri (BM) an herb, found throughout the Indian subcontinent in wet, damp and marshy areas is used in Ayurvedic system of medicine for improving intellect/memory, treatment of anxiety and neuropharmacological disorders. Although extensively given to children as a memory enhancer, no data exists on its ability to modulate neuronal oxidative stress in prepubertal animal models. Hence in this study, we examined if dietary intake of BM leaf powder has the propensity to modulate endogenous markers of oxidative stress, redox status (reduced GSH, thiol status), response of antioxidant defenses (enzymic), protein oxidation and cholinergic function in various brain regions of prepubertal (PP) mice. PP mice maintained on a BM-enriched diet (0.5 and 1%) for 4 weeks showed a significant diminution of basal oxidative markers (malondialdehyde levels, reactive species generation, hydroperoxide levels and protein carbonyls) in both cytoplasm and mitochondria of all brain regions. This was accompanied with enhanced reduced glutathione, thiol levels and elevated activities of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase). Significant reduction in the activity of acetyl cholinesterase enzyme in all brain regions suggested the potential of BM leaf powder to modulate cholinergic function. Further evidence that dietary intake of BM leaf powder confers the prepubertal brain with additional capacity to cope up with neurotoxic prooxidants was obtained by exposing cortical/cerebellar synaptosomes of normal and BM fed mice to 3-nitropropionic acid (3-NPA). While synaptosomes from control mice exhibited a concentration related lipid peroxidation and ROS generation, synaptosomes obtained from BM fed mice showed only a marginal induction at the highest concentration clearly suggesting their increased resistance to 3-NPA-induced oxidative stress. Collectively these data clearly indicate the potential of Bacopa monnieri to modulate endogenous markers of oxidative stress in brain tissue of PP mice. Based on these results, it is hypothesized that dietary intake of BM leaf powder confers neuroprotective advantage and is likely to be effective as a prophylactic/therapeutic agent for neurodegenerative disorders involving oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2010.08.005DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
leaf powder
16
bacopa monnieri
12
dietary intake
12
intake leaf
12
brain regions
12
oxidative markers
8
prepubertal mice
8
modulate endogenous
8
endogenous markers
8

Similar Publications

Since the establishment of the COVID-19 pandemic, a range of studies have been developed to understand the pathogenesis of SARS-CoV-2 infection, vaccine development, and therapeutic testing. However, the possible impacts that these viruses can have on non-target organisms have been explored little, and our knowledge of the consequences of the COVID-19 pandemic for biota is still very limited. Thus, the current study aimed to address this knowledge gap by evaluating the possible impacts of oral exposure of C57Bl/6 J female mice to SARS-CoV-2 lysate protein (at 20 µg/L) for 30 days, using multiple methods, including behavioral assessments, biochemical analyses, and histopathological examinations.

View Article and Find Full Text PDF

A cross-tissue transcriptome-wide association study identifies new susceptibility genes for insomnia.

J Neurophysiol

January 2025

Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Despite a significant genetic component to insomnia (heritability: 22-25%), the genetic loci that modulate insomnia risk remain limited. We employed the Unified Test for Molecular Markers (UTMOST) for transcriptome-wide association studies (TWAS) across various tissues, integrating summary statistics from a Genome-Wide Association Study (GWAS) of 462,341 European participants with gene expression data from the Genotype-Tissue Expression (GTEx) project. Three validation methods (FUSION, FOCUS, and MAGMA) were used to confirm important genes.

View Article and Find Full Text PDF

The present study aimed to unveil the gastroprotective potential of Vaccinium macrocarpon (VM) extract and its mechanism of action against indomethacin (INDO)-induced gastric ulcers in rats. To achieve this goal, rats were pretreated with either omeprazole (20 mg/kg) or VM (100 mg/kg) orally for 14 consecutive days. Gastric tissue samples were collected and various parameters were evaluated to understand the mechanism of VM's action, including the levels of superoxide dismutase, malondialdehyde, glutathione, CAT and transforming growth factor beta (TGF-β), as well as the mRNA expression levels of tumour necrosis factor alpha, interleukin 1 beta, nuclear factor kappa B (NF-κB) and inhibitor kappa B (IκB).

View Article and Find Full Text PDF

is a foodborne pathogen linked to severe infections in infants and often associated with contaminated powdered infant formula. The RecA protein, a key player in DNA repair and recombination, also influences bacterial resilience and virulence. This study investigated the impact of deletion on the pathogenicity and environmental stress tolerance of BAA-894.

View Article and Find Full Text PDF

Sugarcane smut caused by is a global sugarcane disease, and studying its molecular pathogenesis is crucial for discovering new prevention and control targets. This study was based on the transcriptome sequencing data of two isolates with different pathogenicities ( and ) of the and screened out a gene encoding the Major Facility Superfamily (MFS) sugar transporter protein and named it . Knockout mutants ( and ) and complementary mutants ( and ) were obtained through polyethylene glycol (PEG)-mediated protoplast transformation technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!