Functionality, structure and composition of the adsorbed films of bovine lipid extract surfactant (BLES), in the absence and presence of bovine serum albumin (BSA), at the air-buffer interface was characterized through surface tension, atomic force microscopy and time of flight secondary ion mass spectrometric methods. Gel and fluid domains of BLES films were found to be altered significantly in the presence of BSA. Differential scanning calorimetric studies on BLES dispersions in presence of BSA revealed that the perturbations of the lipid bilayer structures were significant only at higher amount of BSA. FTIR studies on the BLES dispersions in buffer solution revealed that BSA could affect the lipid head-group hydrations in bilayer as well as the methylene and methyl vibration modes of fatty acyl chains of the phospholipids present in BLES. Serum albumin could perturb the film structure at pathophysiological concentration while higher amount of BSA was required in perturbing the bilayer structures. The studies suggest a connected perturbed bilayer to monolayer transition model for surfactant inactivation at the alveolar-air interface in dysfunctional surfactants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2010.08.058DOI Listing

Publication Analysis

Top Keywords

serum albumin
12
presence bsa
8
studies bles
8
bles dispersions
8
bilayer structures
8
higher amount
8
amount bsa
8
bsa
6
bilayer
5
bles
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!