This paper describes a metabonomic study of prenatal disorders using nuclear magnetic resonance (NMR) spectroscopy of amniotic fluid (AF) collected in the second trimester of pregnancy, to search for metabolite markers of fetal malformations, prediagnostic gestational diabetes (GD), preterm delivery (PTD), early rupture of membranes (PROM), and chromossomopathies. Fetal malformations were found to have the highest impact on AF metabolite composition, enabling statistical validation to be achieved by several multivariate analytical tools. Results confirmed previous indications that malformed fetuses seem to suffer altered energy metabolism and kidney underdevelopment. Newly found changes (namely in α-oxoisovalerate, ascorbate, creatinine, isoleucine, serine, threonine) suggest possible additional effects on protein and nucleotide sugar biosynthesis. Prediagnostic GD subjects showed an average increase in glucose and small decreases in several amino acids along with acetate, formate, creatinine, and glycerophosphocholine. Small metabolite changes were also observed in the AF of subjects eventually undergoing PTD and PROM, whereas no relevant changes were found for chromossomopathies (for which a low number of samples was considered). The potential value of these results for biochemical insight and prediction of prenatal disorders is discussed, as well as their limitations regarding number of samples and overlap of different disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr100815q | DOI Listing |
Orphanet J Rare Dis
January 2025
The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.
Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.
Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.
BMC Musculoskelet Disord
January 2025
Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.
Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.
Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.
J Transl Med
January 2025
Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands.
Background: Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!