Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mds.23349 | DOI Listing |
Mov Disord Clin Pract
January 2025
Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Eur J Neurosci
January 2025
Case Western Reserve University, Cleveland, Ohio, USA.
Movement disorders such as Parkinson's disease (PD) and cervical dystonia (CD) are associated with abnormal neuronal activity in the globus pallidus internus (GPi). Reduced firing rate and presence of spiking bursts are typical for CD, whereas PD is characterized by high frequency tonic activity. This research aims to identify the most important pallidal spiking parameters to classify these conditions.
View Article and Find Full Text PDFeNeuro
January 2025
Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN.
Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or "hedonic" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption.
View Article and Find Full Text PDFNeurobiol Dis
February 2025
Oscar Langendorff Institute of Physiology, University Medical Centre Rostock, Rostock, Germany. Electronic address:
Background: Deep brain stimulation (DBS) targeting globus pallidus internus (GPi) is a recognised therapy for drug-refractory dystonia. However, the mechanisms underlying this effect are not fully understood. This study explores how pallidal DBS alters spatiotemporal pattern formation of neuronal dynamics within the cerebellar cortex in a dystonic animal model, the dt hamster.
View Article and Find Full Text PDFMov Disord Clin Pract
December 2024
Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!