Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Changes in synaptic efficacy and morphology have been proposed as mechanisms underlying learning and memory processes. In our previous studies, high frequency stimulation (HFS) sufficient to induce LTP at the hippocampal mossy fiber (MF) pathway, leads to MF synaptogenesis, in a prominent contralateral form, at the stratum oriens of hippocampal CA3 area. Recently we reported that acute intrahippocampal microinfusion of BDNF induces a lasting potentiation of synaptic efficacy at the MF projection accompanied by a structural reorganization at the CA3 area within the stratum oriens region in a prominent ipsilateral form. It is considered that the capacity of synapses to express plastic changes is itself subject to variation dependent on previous experience. Here we used intrahippocampal microinfusion of BDNF to analyze its effects on functional and structural synaptic plasticity induced by subsequent mossy fiber HFS sufficient to induce LTP in adult rats, in vivo. Our results show that BDNF modifies the ability of the MF pathway to present LTP by HFS. Moreover BDNF modified the structural reorganization pattern produced by HFS, presenting a balanced bilateral appearance. Microinfusion of K252a blocks the functional and morphological effects produced by BDNF, revealing that the BDNF modulation is dependent on its TrkB receptor activation. These findings support the idea that BDNF actions modify subsequent synaptic plasticity; a homeostatic mechanism thought to be essential for synaptic integration among prolonged temporal domains in the adult mammalian brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hipo.20866 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!