Intestinal tissue kallikrein-kinin system in inflammatory bowel disease.

Inflamm Bowel Dis

Department of Basis Biomedical Sciences, Medical University of Silesia, Katowice, Poland.

Published: February 2011

Tissue kallikrein cleaves kininogens to release kinins. Kinins mediate inflammation by activating constitutive bradykinin receptor-2 (BR2), which are rapidly desensitized, and induced by inflammatory cytokines bradykinin receptor-1 (BR1), resistant to desensitization. Intestinal tissue kallikrein (ITK) may hydrolyze growth factors and peptides, whereas kinins are responsible for capillary permeability, pain, synthesis of cytokines, and adhesion molecule-neutrophil cascade. Our and others results have demonstrated ITK in intestinal goblet cells and its release into interstitial space during inflammation. Kallistatin, an inhibitor of ITK, has been shown in epithelial and goblet cells, and was decreased in inflamed intestine as well as in plasma compared with noninflammatory controls. BR1 was upregulated in patients with inflammatory bowel disease (IBD), and it has expressed in an apical part of enterocytes in inflamed intestine, but in the basal part in normal intestine. ITK and BR1 were visualized in macrophages forming granuloma in Crohn's disease. In animal studies BR2 blockade decreased intestinal contraction, but had limited effect on inflammatory lesions. BR1 was found to be upregulated in animal inflamed intestine, in part dependent on tumor necrosis factor alpha (TNF-α). A selective BR1 receptor antagonist decreased morphological and biochemical features of experimental intestinal inflammation. Both BR1 and BR2 mediate epithelial ion transport that leads to secretory diarrhea. The upregulation of BR1 in inflamed intestine provides a structural basis for the kinins function, suggesting that a selective BR1 antagonist may have potential in therapeutic trial of IBD patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ibd.21337DOI Listing

Publication Analysis

Top Keywords

inflamed intestine
16
intestinal tissue
8
inflammatory bowel
8
bowel disease
8
tissue kallikrein
8
br1
8
goblet cells
8
br1 upregulated
8
selective br1
8
intestinal
5

Similar Publications

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

Tofacitinib (Tof), a commercially available pan-Janus kinases inhibitor, is approved for the treatment of moderate to severe ulcerative colitis. However, its clinical application is limited due to dose-dependent systemic side effects. The present study aims to develop an efficient oral colon-targeted drug delivery systems using prebiotic pectin (Pcn) and chitosan (Csn) polysaccharides as a shell, with Tof loaded into a Bovine Serum Albumin (BSA) core, and improving it with chondroitin sulfate (Chs), thus constructing Tof@BSA-Chs-CP nanoparticles (NPs).

View Article and Find Full Text PDF

The aim was to explore factors associated with intestinal tissue levels of anti-TNF alpha (anti-TNF), anti-TNF antibodies, and cytokines in pediatric patients with Crohn Disease (CD). In a prospective exploratory study of CD patients undergoing ileocecal resection or colonoscopy between 6/2020 and 1/2023, we analysed tissue levels of anti-TNF, anti-TNF antibodies, and cytokines (TNF-α, IL-17, IL-1β, IFN-γ) from intestinal biopsies. Mixed-effects regression models, adjusted for potential confounders, were used.

View Article and Find Full Text PDF

Similarly to acute intestinal helminth infection, several conditions of chronic eosinophilic type 2 inflammation of mucosal surfaces, including asthma and eosinophilic esophagitis, feature robust expansions of intraepithelial mast cells (MCs). Also the hyperplastic mucosa of nasal polyposis in the context of chronic rhinosinusitis, with or without COX1 inhibitor intolerance, contains impressive numbers of intraepithelial MCs. In this issue of the JCI, Derakhshan et al.

View Article and Find Full Text PDF

-Derived Exosome-Like Nanoparticles Mitigate Colitis in Mice via Inhibition of the NLRP3 Signaling Pathway and Modulation of the Gut Microbiota.

Int J Nanomedicine

January 2025

Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China.

Background: Plant-derived exosome-like nanoparticles (PELNs) have received widespread attention in treating ulcerative colitis (UC). However, the role of -derived exosome-like nanoparticles (HELNs) in UC remains unclear. This study aims to evaluate the efficacy of HELNs in treating colitis in mice and investigate its potential mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!