Maraviroc is an orally available antagonist of the CCR5 chemokine receptor, which acts as a human immunodeficiency virus type 1 (HIV-1) coreceptor. Binding of maraviroc to this receptor blocks HIV-1 attachment to the coreceptor and prevents HIV-1 from entering host cells. Maraviroc does not require intracellular processing to exert this activity. Drug interaction studies have shown changes in maraviroc exposure when given with other anti-HIV medications, and thus quantification of maraviroc in human plasma is important to manage drug interactions and to evaluate the relationship between plasma concentrations and treatment response. We developed a conventional LC-MS method for determining plasma maraviroc concentrations, validated by estimating precision and accuracy for inter- and intraday analysis in the concentration range of 0.011-2.188 µg/ml. The calibration curve was linear within this range. The average accuracy ranged from 92.7% to 99.7%, while the relative standard deviations of both inter- and intraday assays were less than 7.1%. Recovery of maraviroc exceeded 86.7%. Our LC-MS method provides a conventional, accurate and precise way to determine the maraviroc concentration in human plasma. This method enables dose adjustment based on monitoring plasma maraviroc concentrations and permits management of drug interactions and toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2152/jmi.57.245 | DOI Listing |
Sci Rep
December 2024
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, Hubei General Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
The effect of sexual dimorphism on the metabolism of patients with Parkinson's disease has not been clarified. A group of patients with Parkinson's disease and healthy controls were recruited, and their clinical characteristics and plasma were collected. Untargeted liquid chromatography-mass spectrometry-based plasma metabolomics profiling was performed.
View Article and Find Full Text PDFSci Rep
December 2024
University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Vietnam.
Oxidative stress, characterized by the damaging accumulation of free radicals, is associated with various diseases, including cardiovascular, neurodegenerative, and metabolic disorders. The transcription factor Nrf2 is pivotal in cellular defense against oxidative stress by regulating genes that detoxify free radicals, thus maintaining redox homeostasis and preventing cellular aging. Keap1 plays a regulatory role through its interaction with Nrf2, ensuring Nrf2 degradation under homeostatic conditions and facilitating its stabilization and nuclear translocation during oxidative stress.
View Article and Find Full Text PDFBiomed Chromatogr
January 2025
Drug Metabolism and Pharmacokinetics, Laxai Life Sciences Pvt. Ltd, Hyderabad, India.
A highly sensitive and rapid LC-MS/MS method was developed and validated for the quantification of dexamethasone in rat plasma and brain tissue. Protein precipitation method was used for sample preparation. The separation of dexamethasone and the IS (labetalol) was achieved on an Atlantis dC column using an isocratic mobile phase (10 mM ammonium formate and acetonitrile, 25/75, v/v) delivered at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!