Glucocorticoids modulate immune development and function through the induction of lymphocyte apoptosis via mechanisms requiring alterations in gene expression. Recently, short, noncoding, microRNAs have been identified as key regulators of lymphocyte function; however, it is unknown whether glucocorticoids regulate noncoding microRNAs and whether this regulation contributes to lymphocyte apoptosis. We now show by both microarray and deep sequencing analysis that microRNAs are substantially repressed during glucocorticoid-induced apoptosis of primary rat thymocytes. Mechanistic studies revealed that primary microRNA transcripts were not repressed, whereas the expression of the key microRNA processing enzymes: Dicer, Drosha, and DGCR8/Pasha, were significantly reduced at both the mRNA and protein levels during glucocorticoid-induced apoptosis. To delineate the role of Dicer depletion and microRNA repression in apoptosis, we silenced Dicer expression in two human leukemic cell lines and demonstrated that Dicer depletion significantly enhanced glucocorticoid-induced apoptosis in both model systems. Finally, in vitro and in vivo overexpression of the conserved miR-17-92 polycistron, which was repressed significantly by dexamethasone treatment in both our microarray and deep sequencing studies, blunted glucocorticoid-induced apoptosis. These studies provide evidence of altered post-transcriptional microRNA expression and the repression of the microRNA bioprocessing pathway during glucocorticoid-induced apoptosis of lymphocytes, suggesting a role for microRNA processors and specific microRNAs in cell life/death decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978599 | PMC |
http://dx.doi.org/10.1074/jbc.M110.162123 | DOI Listing |
Biochem Pharmacol
January 2025
Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:
Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis, marked by reduced bone density and impaired osteoblast function. Current treatments have serious side effects, highlighting the need for new drug candidates. Pyrimidine derivatives have been noted for their potential in suppressing osteoclastogenesis, but their effects on osteogenesis and GIOP remain underexplored.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
Background: Glucocorticoids (GCs) are critical regulatory molecules in the body, commonly utilized in clinical practice for their potent anti-inflammatory and immunosuppressive properties. However, prolonged, high-dose GC therapy is frequently associated with femoral head necrosis, a condition known as glucocorticoid-induced osteonecrosis of the femoral head (GC-ONFH). Emerging evidence suggests that enhanced autophagy may mitigate apoptosis, thereby protecting osteoblasts from GC-induced damage and delaying the progression of ONFH.
View Article and Find Full Text PDFJ Pharmacol Sci
December 2024
Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai, China. Electronic address:
Glucocorticoid-induced osteoporosis (GIOP) is a widespread disease characterized by low bone density. There remains a lack of effective means for osteoporosis. Rehmannioside A (ReA), an iridoid glycoside, exhibits various pharmacological activities.
View Article and Find Full Text PDFBone Res
November 2024
Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Osteonecrosis of the femoral head (ONFH) is a common complication of glucocorticoid (GC) therapy. Recent advances demonstrate that sympathetic nerves regulate bone homeostasis, and GCs lower the sympathetic tone. Here, we show that the dramatically decreased sympathetic tone is closely associated with the pathogenesis of GC-induced ONFH.
View Article and Find Full Text PDFAPL Bioeng
December 2024
Department of Orthopedic Surgery, Da-Chien General Hospital, Miaoli, Taiwan.
This study explores the mechanisms of glucocorticoid-induced osteoporosis (OP) and Rheumatoid arthritis (RA), focusing on apoptosis and its role in the progression from RA to OP. Using microarray data from the GEO database, differential gene expression analysis was conducted with the limma package, identifying significant genes in RA and OP. Weighted Gene Co-expression Network Analysis (WGCNA) further examined gene relationships with the disease status, identifying co-expression patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!