AI Article Synopsis

  • The Ubp3/Bre5 complex acts as a specific enzyme that removes ubiquitin from Sec23, which is essential for the transport process between the endoplasmic reticulum and Golgi apparatus.
  • Ubiquitylation of Sec23 is regulated by the Rsp5 ubiquitin ligase, impacting its stability and function both in cellular conditions and laboratory experiments.
  • The chaperone-like protein Cdc48 partners with the Ubp3/Bre5 complex and plays a crucial role in deciding whether Sec23 is degraded or stabilized, especially in conditions where Cdc48 is mutated.

Article Abstract

Ubp3/Bre5 complex is a substrate-specific deubiquitylating enzyme which mediates deubiquitylation of Sec23, a component of the COPII complex involved in the transport between endoplasmic reticulum and Golgi apparatus. Here we show that ubiquitylation of Sec23 is controlled by the Rsp5 ubiquitin ligase both in vivo and in vitro. We have recently identified Cdc48, a chaperone-like that plays a key role in the proteasomal escort pathway, as a partner of the Ubp3/Bre5 complex. We now found that cdc48 thermosensitive mutant cells not only accumulate ubiquitylated form of Sec23 but also display a stabilization of this protein at the restrictive temperature. This indicates that Cdc48 controls the proteasome-mediated degradation of Sec23. Our data favor the idea that Cdc48 plays a key role in deciphering fates of ubiquitylated Sec23 to degradation or deubiquitylation/stabilization via its cofactors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2010.09.005DOI Listing

Publication Analysis

Top Keywords

rsp5 ubiquitin
8
ubiquitin ligase
8
ubp3/bre5 complex
8
plays key
8
key role
8
sec23
6
cdc48
5
ligase aaa-atpase
4
aaa-atpase cdc48
4
cdc48 control
4

Similar Publications

Unlabelled: Cellular responses to external stress allow microorganisms to adapt to a vast array of environmental conditions, including infection sites. The molecular mechanisms behind these responses are studied to gain insight into microbial pathogenesis, which could lead to new antimicrobial therapies. Here, we explore a role for arrestin protein-mediated ubiquitination in stress response and pathogenesis in the pathogenic fungus .

View Article and Find Full Text PDF

Lys ubiquitination is catalysed by E3 ubiquitin ligases and is central to the regulation of protein stability and cell signalling in normal and disease states. There are gaps in our understanding of E3 mechanisms, and here we use protein semisynthesis, chemical rescue, microscale thermophoresis and other biochemical approaches to dissect the role of catalytic base/acid function and conformational interconversion in HECT-domain E3 catalysis. We demonstrate that there is plasticity in the use of the terminal side chain or backbone carboxylate for proton transfer in HECT E3 ubiquitin ligase reactions, with yeast Rsp5 orthologues appearing to be possible evolutionary intermediates.

View Article and Find Full Text PDF

Deep-sea organisms are subjected to extreme conditions; therefore, understanding their adaptive strategies is crucial. We utilize Saccharomyces cerevisiae as a model to investigate pressure-dependent protein regulation and piezo-adaptation. Using yeast deletion library analysis, we identified 6 poorly characterized genes that are crucial for high-pressure growth, forming novel functional modules associated with cell growth.

View Article and Find Full Text PDF

Ubiquitination is a key regulator of protein stability and function. The multifunctional protein p27 is known to be degraded by the proteasome following K48-linked ubiquitination. However, we recently reported that when the ubiquitin-conjugating enzyme UbcH7 (UBE2L3) is overexpressed, p27 is stabilized, and cell cycle is arrested in multiple diverse cell types including eye lens, retina, HEK-293, and HELA cells.

View Article and Find Full Text PDF

Killer meiotic drivers (KMDs) skew allele transmission in their favor by killing meiotic progeny not inheriting the driver allele. Despite their widespread presence in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly understood. In several fission yeast species, single-gene KMDs belonging to the wtf gene family exert selfish killing by expressing a toxin and an antidote through alternative transcription initiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!