Unravelling the neurophysiological basis of aggression in a fish model.

BMC Genomics

School of Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, Devon EX4 4PS, UK.

Published: September 2010

Background: Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio), an animal model in which social rank and aggressiveness tightly correlate.

Results: Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT), previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases and estrogen receptors.

Conclusions: Thus, through an integrated approach, combining gene expression profiling, behavioural analyses, and pharmacological manipulations, we identified candidate genes and pathways that appear to play significant roles in regulating aggression in fish. Many of these are novel for non-mammalian systems. We further present a validated system for advancing our understanding of the mechanistic underpinnings of complex behaviours using a fish model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996994PMC
http://dx.doi.org/10.1186/1471-2164-11-498DOI Listing

Publication Analysis

Top Keywords

pharmacological manipulations
12
expression profiles
12
aggression
9
neurophysiological basis
8
basis aggression
8
aggression fish
8
fish model
8
expression profiling
8
aggression zebrafish
8
gene expression
8

Similar Publications

RNA-binding motif protein RBM39 enhances the proliferation of gastric cancer cells by facilitating an oncogenic splicing switch in MRPL33.

Acta Pharmacol Sin

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.

Gastric cancer is a malignant gastrointestinal disease characterized by high morbidity and mortality rates worldwide. The occurrence and progression of gastric cancer are influenced by various factors, including the abnormal alternative splicing of key genes. Recently, RBM39 has emerged as a tumor biomarker that regulates alternative splicing in several types of cancer.

View Article and Find Full Text PDF

The renin-angiotensin-aldosterone system (RAAS) is a complex regulator comprising hormones, proteins, and enzymes. The discovery of the RAAS and its pharmacological manipulation has been essential in the management of cardiovascular diseases, including hypertension. Beyond the benefits of hypertension, RAAS inhibition has implications for heart failure, atherosclerotic disease, and kidney disease.

View Article and Find Full Text PDF

Skin and hair development is regulated by multitude of programs of activation and silencing of gene expression to maintain normal skin and hair follicle (HF) development, homeostasis, and cycling. Here, we have identified E74-like factor 5 (Elf5) transcription factor, as a novel regulator of keratinocyte proliferation and differentiation processes in skin. Expression analysis has revealed that Elf5 expression was localised and elevated in stem/progenitor cell populations of both the epidermis (basal and suprabasal) and in HF bulge and hair germ stem cell (SCs) compartments during skin and hair development and cycling.

View Article and Find Full Text PDF

Background: The Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) is a public-private partnership linking NIH, the FDA, pharmaceutical companies, and nonprofit organizations in an interactive, collaborative program utilizing transcriptomics, genomics, metagenomics, proteomics, and metabolomics to provide data for computational analysis, that, in turn, enables promising targets to be ranked by a combination of omic scores and druggability. This ranking informs the selection of targets for validation.

Method: Human postmortem samples were obtained from Mount Sinai, ROSMAP (Religious Orders Study and Rush Memory and Aging Project), Mayo Clinic (Florida), and Columbia University.

View Article and Find Full Text PDF

Background: Diabetes is a modifiable risk factor for Alzheimer's disease, and GLUT4, an insulin-dependent transporter, plays a crucial role in insulin-resistant conditions and, consequently, in diabetes development. The study aimed to investigate the relationship between tau pathology and insulin resistance by quantifying GLUT4 expression and glucose concentration.

Method: Initially, SH-SY5Y cells underwent transfection with either a wild-type tau plasmid or a mutant tau plasmid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!