Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum.

Parasitol Res

School of Marine Sciences, Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi Campus, Thondi-623 409, Ramnathapuram District, Tamil Nadu, India.

Published: January 2011

The ocean covers more than 70% of earth surface and hosts most 300,000 described species of plants and animals to use, which have been virtually unexploited for the development of medicines. Marine plants are the good source of biologically active entities which exhibit therapeutic properties, when applied single or in combination of different plant extracts (polyherbal). Polyherbal preparations are always a complex mixture of different forms and thus different compounds, which might act as agonistic, synergistic, complementary, antagonistic or toxic way. The present study was initially carried out to test the antiplasmodial activity of 13 mangrove plants and eight seaweeds species distributed along the coast of south India. Of these, mangrove species Aegiceras corniculatum and the seaweed species Chaetomorpha antennina have shown maximum antiplasmodial activity. Hence, the present study was mooted out to increase the percentage of antiplasmodial activity when applied as polyherbal preparations. The effect of marine polyherbal preparations from the methanolic extracts of two marine plants A. corniculatum and C. antennina for their antiplasmodial activity was tested. It shows that the polyherbal extract showed 63.50 ± 0.408% suppression of parasitaemia against Plasmodium falciparum at 1.5 mg ml⁻¹ concentration. In vivo test was carried out with rat animal model to find out the effectiveness of the polyherbal extracts in the live system, which reveals that polyherbal extracts have exhibited remarkable antiplasmodial activity (50.57 ± 0.465%) against Plasmodium berghei at 120 mg kg⁻¹ bw. This study shows that combinations of mangrove plants and seaweeds extracts had a source of lead compounds for the development of new drugs for the treatment of malaria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-010-2041-5DOI Listing

Publication Analysis

Top Keywords

antiplasmodial activity
24
polyherbal preparations
16
polyherbal
8
marine polyherbal
8
chaetomorpha antennina
8
aegiceras corniculatum
8
plasmodium falciparum
8
marine plants
8
mangrove plants
8
plants seaweeds
8

Similar Publications

, a tropical African plant, is traditionally used to treat several diseases, including fever, inflammation, and malaria. Essential oils (EOs) from the plant's leaves, roots, and trunk bark were obtained by hydrodistillation, and their chemical composition was analyzed by gas chromatography-mass spectrometry (GC-MS). The major constituents identified were virdiflorene (18.

View Article and Find Full Text PDF

We recently characterized the potent antiplasmodial activity of the aggregated protein dye YAT2150, whose presumed mode of action is the inhibition of protein aggregation in the malaria parasite. Using single-dose and ramping methods, assays were done to select Plasmodium falciparum parasites resistant to YAT2150 concentrations ranging from 3× to 0.25× the in vitro IC of the compound (in the two-digit nM range) and performed a cross-resistance assessment in P.

View Article and Find Full Text PDF

The combination of the active compounds curcumin and piperine (CP) is effective as an antimalarial; however, the solubility and bioavailability of CP are very low. This study aims to formulate CP in nanoparticles (NP), which are then fabricated into dissolving microneedles (DMN). The NPs were prepared with a concentration ratio of CP-Chitosan-So.

View Article and Find Full Text PDF

Halogenated natural products are an important class of secondary metabolites that are widely distributed in nature. The presence of halogen atoms usually enhances the pharmacological activity of the compounds. As a result, halogenated natural products have shown promising pharmacological activities in antibacterial, antitumour, anti-inflammatory and antiplasmodial properties, providing a rich resource for the development of new drugs.

View Article and Find Full Text PDF

The natural world is a vast reservoir of exceptionally varied and inventive chemical compositions. Natural products are used as initial compounds to create combinatorial libraries by targeted modifications and then by analyzing their structure-activity connections. This stage is regarded as a crucial milestone in drug discovery and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!