A phenomenological kV beam model was developed to address attenuation and scatter in radiographic images for the purpose of cone-beam imaging. Characterization of a kV beam in terms of the minimal number of parameters and calculation of attenuation and scatter in radiographs of scanned objects are the main applications of this model. Model parameters are derived from radiographs of homogeneous solid water phantoms for various depths and field sizes. The response of the cone-beam detector to kV beams is factorized into different contributions such as output factor, tissue-air ratio and off-axis ratio, with each contribution having an analytical representation. The formulas which are used to characterize the beam model in uniform phantoms are then extended to arbitrary objects using the concept of the water-equivalent pathlength. A weighted sum of three Gaussians in each direction models the dose deposition kernel. Detector response arising from the first Gaussian term can be interpreted as the primary signal while the second and third Gaussians constitute short- and long-range scatter. The model is then applied to predict the primary and scatter signals for arbitrary objects. A technique of scatter removal from the measured radiographs is investigated. The model accurately predicts detector response of varying-thickness phantoms such as multi-step and cylindrical phantoms. The scatter contributes over 90% to the total signal for 20 cm thick phantoms. The calculated scatter-to-primary ratio as a function of spatial coordinates agrees with Monte Carlo studies reported in the literature. Water-equivalent thickness related to primary and scatter contributions calculated from an analysis of radiographs results in an improved calibration technique suitable for CB-CT reconstruction. The kV beam model and the associated theoretical formulations can be utilized to characterize any kV beam line; however, for the specific study the OBI system (Varian) was used to obtain experimental radiographs.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/55/19/011DOI Listing

Publication Analysis

Top Keywords

beam model
16
phenomenological beam
8
model
8
cone-beam imaging
8
attenuation scatter
8
characterize beam
8
arbitrary objects
8
detector response
8
primary scatter
8
scatter
7

Similar Publications

Objective: To study the biomechanical changes induced by differences in perioral force in patients with missing anterior maxillary teeth at rest via finite element analysis (FEA).

Methods: Using conical beam CT (CBCT) images of a healthy person, models of the complete maxillary anterior dental region (Model A) and maxillary anterior dental region with a missing left maxillary central incisor (Model B) were constructed. The labial and palatine alveolar bone and tooth surface of the bilateral incisor and cusp regions were selected as the application sites, the resting perioral force was applied perpendicular to the tissue surface, and the changes in maxillary stress and displacement after the perioral force was simulated were analyzed.

View Article and Find Full Text PDF

Background: To determine outcomes of MRI-assisted radiosurgery (MARS) for salvage brachytherapy using the radioisotope Pd after various upfront treatments including surgery, external beam radiotherapy, and brachytherapy.

Methods: We retrospectively reviewed data for patients who underwent salvage MARS for intraprostatic lesions or prostate bed recurrences from 2016 to 2022. Biochemical recurrence, prostate cancer-specific, and overall survival, and the cumulative incidences of toxicities, were determined by Kaplan-Meier estimates.

View Article and Find Full Text PDF

One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD.

View Article and Find Full Text PDF

Orthotopic tumor models in pre-clinical translational research are becoming increasingly popular, raising the demands on accurate tumor localization prior to irradiation. This task remains challenging both in X-ray and proton computed tomography (xCT and pCT, respectively), due to the limited contrast of tumor tissue compared to the surrounding tissue. We investigate the feasibility of gadolinium oxide nanoparticles as multimodal contrast enhancement agent for both imaging modalities.

View Article and Find Full Text PDF

The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressure at the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellular heterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!