We recently demonstrated that human embryonic stem cells (hESCs) utilize homologous recombination repair (HRR) as primary means of double-strand break (DSB) repair. We now show that hESCs also use nonhomologous end joining (NHEJ). NHEJ kinetics were several-fold slower in hESCs and neural progenitors (NPs) than in astrocytes derived from hESCs. ATM and DNA-PKcs inhibitors were ineffective or partially effective, respectively, at inhibiting NHEJ in hESCs, whereas progressively more inhibition was seen in NPs and astrocytes. The lack of any major involvement of DNA-PKcs in NHEJ in hESCs was supported by siRNA-mediated DNA-PKcs knockdown. Expression of a truncated XRCC4 decoy or XRCC4 knock-down reduced NHEJ by more than half suggesting that repair is primarily canonical NHEJ. Poly(ADP-ribose) polymerase (PARP) was dispensable for NHEJ suggesting that repair is largely independent of backup NHEJ. Furthermore, as hESCs differentiated a progressive decrease in the accuracy of NHEJ was observed. Altogether, we conclude that NHEJ in hESCs is largely independent of ATM, DNA-PKcs, and PARP but dependent on XRCC4 with repair fidelity several-fold greater than in astrocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2984607PMC
http://dx.doi.org/10.18632/aging.100197DOI Listing

Publication Analysis

Top Keywords

nhej hescs
16
nhej
10
nonhomologous joining
8
human embryonic
8
embryonic stem
8
stem cells
8
hescs
8
nps astrocytes
8
atm dna-pkcs
8
suggesting repair
8

Similar Publications

Repeat expansion in a Fragile X model is independent of double strand break repair mediated by Pol θ, Rad52, Rad54l or Rad54b.

bioRxiv

November 2024

Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.

Microsatellite instability is responsible for the human Repeat Expansion Disorders. The mutation responsible differs from classical cancer-associated microsatellite instability (MSI) in that it requires the mismatch repair proteins that normally protect against MSI. LIG4, an enzyme essential for non-homologous end-joining (NHEJ), the major pathway for double-strand break repair (DSBR) in mammalian cells, protects against expansion in mouse models.

View Article and Find Full Text PDF

When used to edit genomes, Cas9 nucleases produce targeted double-strand breaks in DNA. Subsequent DNA-repair pathways can induce large genomic deletions (larger than 100 bp), which constrains the applicability of genome editing. Here we show that Cas9-mediated double-strand breaks induce large deletions at varying frequencies in cancer cell lines, human embryonic stem cells and human primary T cells, and that most deletions are produced by two repair pathways: end resection and DNA-polymerase theta-mediated end joining.

View Article and Find Full Text PDF

Integration of a point mutation to correct or edit a gene requires the repair of the CRISPR-Cas9-induced double-strand break by homology-directed repair (HDR). This repair pathway is more active in late S and G2 phases of the cell cycle, whereas the competing pathway of nonhomologous end-joining (NHEJ) operates throughout the cell cycle. Accordingly, modulation of the cell cycle by chemical perturbation or simply by the timing of gene editing to shift the editing toward the S/G2 phase has been shown to increase HDR rates.

View Article and Find Full Text PDF

DPPA5A suppresses the mutagenic TLS and MMEJ pathways by modulating the cryptic splicing of and in mouse embryonic stem cells.

Proc Natl Acad Sci U S A

July 2023

State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.

Genetic alterations are often acquired during prolonged propagation of pluripotent stem cells (PSCs). This ruins the stem cell quality and hampers their full applications. Understanding how PSCs maintain genomic integrity would provide the clues to overcome the hurdle.

View Article and Find Full Text PDF

The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene fusions as pan-tumor oncogenic drivers has led to new personalized therapies in oncology. Recent studies investigating NTRK fusions among mesenchymal neoplasms have identified several emerging soft tissue tumor entities displaying various phenotypes and clinical behaviors. Among them, tumors resembling lipofibromatosis or malignant peripheral nerve sheath tumors often harbor intra-chromosomal NTRK1 rearrangements, while most infantile fibrosarcomas are characterized by canonical ETV6::NTRK3 fusions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!