Principal neurons in the adult cerebral cortex undergo synaptic, dendritic, and spine remodeling in response to different stimuli, and several reports have demonstrated that the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) participates in these plastic processes. However, there is only limited information on the expression of this molecule on interneurons and on its role in the structural plasticity of these cells. We have found that PSA-NCAM is expressed in mature interneurons widely distributed in all the extension of the cerebral cortex and have excluded the expression of this molecule in most principal cells. Although PSA-NCAM expression is generally considered a marker of immature neurons, birth-dating analyses reveal that these interneurons do not have an adult or perinatal origin and that they are generated during embryonic development. PSA-NCAM expressing interneurons show reduced density of perisomatic and peridendritic puncta expressing different synaptic markers and receive less perisomatic synapses, when compared with interneurons lacking this molecule. Moreover, they have reduced dendritic arborization and spine density. These data indicate that PSA-NCAM expression is important for the connectivity of interneurons in the adult cerebral cortex and that its regulation may play an important role in the structural plasticity of inhibitory networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhq177 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Neurosurgery, Wuhan NO.1 Hospital, Wuhan 432000, China. *Corresponding author, E-mail:
Objective To investigate the effects and molecular mechanism of Homer protein homolog 1a (Homer 1a) overexpression on nerve injury in mice with traumatic brain injury (TBI). Methods Sixty male C57BL/6 mice were randomly divided into five groups: sham group, TBI group, empty lentivirus (Lv-NC) group, Homer 1a overexpression lentivirus (Lv-Homer 1a) group and Lv-Homer 1a + 740 Y-P group, with 12 mice in each group. The lentivirus was orthotopic injected into the cerebral cortex of mice 5 d before modeling, while 740 Y-P was injected intraperitoneally 1 d before modeling.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
Acta Neurochir (Wien)
January 2025
Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India.
Background: Reaching parenchymal segments of the lateral lenticulostriate artery (LSA) perforators, which represent the medial resection limit in insular gliomas (IG), remains a challenge. The currently described methods are indirect and sometimes, imprecise.
Methods: We report an antegrade direct skeletonization technique to identify these tiny arteries at the medial end of IGs with an illustrative case of grade 2 astrocytoma.
Eur J Neurol
January 2025
Department of Neurosurgery, Medical University of Vienna, Vienna, Austria.
Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.
Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!