AI Article Synopsis

Article Abstract

Present-day and more than 30 years old road and footpath pavements from Auckland, New Zealand were analysed for PAHs to test the hypothesis that coal tar based pavement binders contribute to unusually high PAH concentrations in adjacent stream and estuarine sediments. Total PAH (∑(28)PAH) concentrations in the dichloromethane-soluble fraction ("binder"), comprising 5-10% of pavement mass, were as high as 200,000 mgkg(-1) (10,000 mgkg(-1) in binder+aggregate). Older and deeper pavement layers were strongly pyrogenic, whereas pavement layers from recently sealed roads had a more petrogenic composition and more than 1000 times lower ∑(28)PAH concentrations. Source identification analysis using three PAH isomer ratio pairs (benz(a)anthracene/(benz(a)anthracene+chrysene); benzo(a)pyrene/(benzo(a)pyrene+benzo(e)pyrene); and indeno(1,2,3-cd)pyrene/(indeno(1,2,3-cd)pyrene+benzo(g,h,i)perylene) revealed low PAH (bitumen) pavements to have consistently lower isomer ratios than high PAH (coal tar) samples. Moreover, pavement data for one isomer ratio (e.g. benzo(a)pyrene/(benzo(a)pyrene+benzo(e)pyrene) were highly correlated with those of another isomer ratio (e.g. benz(a)anthracene/(benz(a)anthracene+chrysene) and were bounded at their lower and higher extremes by the characteristics of pure bitumen and coal tar, respectively, suggesting that PAH composition of a given pavement sample could be accounted for by conservative mixing between coal tar and bitumen as source materials. A concentration-weighted mixing model, with coal tar and bitumen as source materials, explained more than 80% of the variance in isomer ratios and enveloped the entire PAH compositional and concentration range encountered. PAH composition and concentrations in adjacent stream sediments (> 15 mgkg(-1) dry weight) were consistent with diluted coal tar material as a principal PAH source. Due to the very high PAH concentrations of coal tar, a coal tar content of as little as 0.01% of total sediment mass can account for more than 90% of PAH concentrations in adjacent stream sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2010.08.030DOI Listing

Publication Analysis

Top Keywords

coal tar
36
high pah
12
pah concentrations
12
concentrations adjacent
12
adjacent stream
12
isomer ratio
12
pah
11
coal
9
tar
9
mixing model
8

Similar Publications

Study on molecular structural heterogeneity of tar-rich coal based on micro-FTIR.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an 710054 China.

The coal molecular structure in micro-areas plays a critical role in matrix thermal conduction and volatile generation during the pyrolysis of tar-rich coal. However, as a major maceral contributing to hydrocarbon generation, the molecular structures of different micro-areas in vitrinite show heterogeneity, which still lacks research. Micro-FTIR technology was used in this study to characterize the molecular structure in different micro-areas of tar-rich coal with varying tar yields.

View Article and Find Full Text PDF

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

The association between psoriasis and non-melanoma skin cancer (NMSC) remains inconsistent despite biologic plausibility. Immunosuppressive effects of systemic psoriasis treatments have also been hypothesized to contribute to the development of NMSC as well. However, data assessing the risk of NMSC associated with immunomodulatory psoriasis medications, particularly newer biologic therapies, are limited.

View Article and Find Full Text PDF
Article Synopsis
  • In the early 20th century, Japan made significant contributions to cancer research, starting with the 1915 experiment by Yamagiwa and Ichikawa, which induced skin cancer in rabbits using coal tar.
  • In 1932, Sasaki and Yoshida discovered liver cancer in rats through a specific diet involving a chemical compound, marking the first artificial cancer found in internal organs.
  • Finally, in 1967, Sugimura induced stomach cancer in mice with a chemical mutagen, reinforcing the link between DNA abnormalities and cancer development.
View Article and Find Full Text PDF

Progress in Pyrene-4,5,9,10-Tetraone-Based Organic Electrode Materials for Rechargeable Batteries.

ChemSusChem

November 2024

Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.

Article Synopsis
  • Pyrene-4,5,9,10-tetraone (PTO) is a coal tar derivative with potential as a sustainable organic electrode due to its high capacity and redox robustness, but it faces challenges like poor cycling stability and low electrical conductivity.
  • * Recent strategies aim to reduce PTO's solubility in organic electrolytes to prevent issues like self-discharge and shuttle effects, thus enhancing its performance in batteries.
  • * The review discusses structural characteristics of PTO, compares methods to mitigate its solubility issues, explores the design of polymer electrode materials, and identifies future challenges for improving PTO and similar organic electrode materials in energy storage.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!