Water-soluble organic carbon (WSOC) constitutes a large fraction of climate-forcing organic aerosols in the atmosphere, yet the sources of WSOC are poorly constrained. A method was developed to measure the stable carbon isotope (δ(13)C) and radiocarbon (Δ(14)C) composition of WSOC for apportionment between fossil fuel and different biogenic sources. Synthetic WSOC test substances and ambient aerosols were employed to investigate the effect of both modern and fossil carbon contamination and any method-induced isotope fractionation. The method includes extraction of aerosols collected on quartz filters followed by purification and preparation for off-line δ(13)C and Δ(14)C determination. The preparative freeze-drying step for isotope analysis yielded recoveries of only ∼70% for ambient aerosols and WSOC probes. However, the δ(13)C of the WSOC isolates were in agreement with the δ(13)C of the unprocessed starting material, even for the volatile oxalic acid probe (6.59 ± 0.37‰ vs 6.33 ± 0.31‰; 2 sd). A (14)C-fossil phthalic acid WSOC probe returned a fraction modern biomass of <0.008 whereas a (14)C-modern sucrose standard yielded a fraction modern of >0.999, indicating the Δ(14)C-WSOC method to be free of both fossil and contemporary carbon contamination. Application of the δ(13)C/Δ(14)C-WSOC method to source apportion climate-affecting aerosols was illustrated be constraining that WSOC in ambient Stockholm aerosols were 88% of contemporary biogenic C3 plant origin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac1014436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!