ATP- and iron-protein-independent activation of nitrogenase catalysis by light.

J Am Chem Soc

University of California, San Diego, Department of Chemistry and Biochemistry, La Jolla, California 92093-0356, USA.

Published: October 2010

We report here the light-driven activation of the molybdenum-iron-protein (MoFeP) of nitrogenase for substrate reduction independent of ATP hydrolysis and the iron-protein (FeP), which have been believed to be essential for catalytic turnover. A MoFeP variant labeled on its surface with a Ru-photosensitizer is shown to photocatalytically reduce protons and acetylene, most likely at its active site, FeMoco. The uncoupling of nitrogenase catalysis from ATP hydrolysis should enable the study of redox dynamics within MoFeP and the population of discrete reaction intermediates for structural investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja1071866DOI Listing

Publication Analysis

Top Keywords

nitrogenase catalysis
8
atp hydrolysis
8
atp- iron-protein-independent
4
iron-protein-independent activation
4
activation nitrogenase
4
catalysis light
4
light report
4
report light-driven
4
light-driven activation
4
activation molybdenum-iron-protein
4

Similar Publications

Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N) to ammonia (NH) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism.

View Article and Find Full Text PDF

Nitrogenase is the enzyme primarily responsible for reducing atmospheric nitrogen to ammonia. There are three general forms of nitrogenase based on the metal ion present in the cofactor binding site, namely, molybdenum-dependent nitrogenases with the iron-molybdenum cofactor (FeMoco), the vanadium-dependent nitrogenases with FeVco, and the iron-only nitrogenases. It has been shown that the vanadium-dependent nitrogenases tend to have a lesser efficacy in reducing dinitrogen but a higher efficacy in binding and reducing carbon monoxide.

View Article and Find Full Text PDF

The nitrogenase mechanism: new roles for the dangler?

J Biol Inorg Chem

December 2024

Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, 147-75, Pasadena, CA, 91125, USA.

Dangler sites protruding from a core metallocluster were introduced into the bioinorganic lexicon in 2000 by R.D. Britt and co-workers in an analysis of the tetramanganese oxygen-evolving cluster in photosystem II.

View Article and Find Full Text PDF

Whereas molybdenum dinitrogen complexes have played a major role as catalytic model systems of nitrogenase, corresponding tungsten complexes were in most cases found to be catalytically inactive. Herein, we present a modified pentadentate tetrapodal (pentaPod) phosphine ligand in which two dimethylphosphine groups of the pentaPod (P5) ligand have been replaced with phospholanes (Pln). The derived molybdenum complex [Mo(N)P5] generates 22 and the analogous tungsten complex [W(N)P5] 7 equivalents of NH from N in the presence of 180 equivalents of SmI(THF)/HO, rendering the latter the first tungsten complex chemocatalytically converting N to NH.

View Article and Find Full Text PDF

NifEN: a versatile player in nitrogenase assembly, catalysis and evolution.

J Biol Inorg Chem

December 2024

Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.

The Mo-nitrogenase catalyzes the reduction of N to NH at the cofactor of its catalytic NifDK component. NifEN shares considerable homology with NifDK in primary sequence, tertiary structure and associated metallocenters. Better known for its biosynthetic function to convert an all-iron precursor (L-cluster; [FeSC]) to a mature cofactor (M-cluster; [(R-homocitrate) MoFeSC]), NifEN also mimics NifDK in catalyzing substrate reduction at ambient conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!