Recently, significant advances have been made independently in electrogenerated chemiluminescence (ECL) analysis and supramolecular anion sensing. Herein, we demonstrate a new proof of concept for ECL-based pyrophosphate (PPi) sensing, where the emission intensity is changed by electrochemical turn-on. The ECL PPi sensor (1-2Zn) consists of two orthogonally bonded moieties: boron dipyrromethene (ECL reporter) and a phenoxo-bridged bis(Zn(2+)-dipicolylamine) complex (PPi receptor). The presence of PPi is confirmed from the change in the intensity of green ECL generated from the former when PPi is selectively recognized by the latter. During PPi recognition, changes are caused in the electronic states of the receptor, and this stimulates the attenuation of ECL intensity. The electrochemical "on-off" triggering of light emission upon anion binding forms the basis of a new anion sensing strategy. We expect that green-colored ECL sensing would offer an advantage to current ECL analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac1017293 | DOI Listing |
Plants (Basel)
January 2025
The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China. Electronic address:
Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling.
View Article and Find Full Text PDFPLoS One
January 2025
UK Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom.
Surface water plays a vital role in the spread of infectious diseases. Information on the spatial and temporal dynamics of surface water availability is thus critical to understanding, monitoring and forecasting disease outbreaks. Before the launch of Sentinel-1 Synthetic Aperture Radar (SAR) missions, surface water availability has been captured at various spatial scales through approaches based on optical remote sensing data.
View Article and Find Full Text PDFSci Adv
January 2025
Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany.
Systemic signaling is an essential hallmark of multicellular life. Pathogen encounter occurs locally but triggers organ-scale and organismic immune responses. In plants, elicitor perception provokes systemically expanding Ca and HO signals conferring immunity.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Furong Labratory, Changsha 410083, China.
A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!