One of the most important environmental protection problems for coal-fired power plants is prevention of atmospheric pollution of flying ash. The ash particles are typically removed from flue gases by means of electrostatic precipitators, for which the efficiency may be significantly increased by lowering the resistance of fly ash, which may be achieved by controlled addition of microamounts of sulfur trioxide (SO3) into the flue gases. This paper describes the novel technology for production of SO3 by sulfur dioxide (SO2) oxidation using the combined catalytic system consisting of conventional vanadium catalyst and novel platinum catalyst on the base of silicazirconia glass-fiber supports. This combination provides highly efficient SO, oxidation in a wide temperature range with achievement of high SO, conversion. The performed pilot tests have demonstrated reliable and stable operation, excellent resistance of the novel catalytic system to deactivation, and high overall efficiency of the proposed process. The scale of the plant was equivalent to the commercial prototype; therefore, no further scale-up of the oxidation process is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3155/1047-3289.60.8.1002 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Hydride (H) species on oxides have been extensively studied over the past few decades because of their critical role in various catalytic processes. Their syntheses require high temperatures and the presence of hydrogen, which involves complex equipment, high energy costs, and strict safety protocols. Hydride species tend to decompose in the presence of atmospheric oxygen and water, which reduces their catalytic activities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, China.
For Zn metal batteries, the Zn anode faces several challenges, including Zn dendrites, hydrogen evolution, and corrosion. These issues are closely related to the Zn deposition process at the electrode/electrolyte interface. Herein, we propose interfacial engineering to protect the Zn anode and induce homogeneous deposition using conjugated cyclized polyacrylonitrile (cPAN) polymer nanofibers.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Life Sciences and Systems Biology, University of Torino, Italy.
A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.
View Article and Find Full Text PDFStructure
January 2025
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. Electronic address:
High-risk human papillomavirus E6 oncoprotein is a model system for the recognition and degradation of cellular p53 tumor suppressor protein. There remains a gap in the understanding of the ubiquitin transfer reaction, including placement of the E6AP catalytic HECT domain of the ligase concerning the p53 substrate and how E6 itself is protected from ubiquitination. We determined the cryoelectron microscopy (cryo-EM) structure of the E6AP/E6/p53 complex, related the structure to in vivo modeling of the tri-molecular complex, and identified structural interactions associated with activation of the ubiquitin ligase function.
View Article and Find Full Text PDFChemosphere
January 2025
Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
Polyethylene terephthalate (PET) waste significantly contributes to the global plastic crisis, but enzymatic conversion has become an efficient and environmentally friendly strategy to combat it. Therefore, this study explored the Re-face selective depolymerization mechanisms of a novel PET-degradation peptidase, hydrolase 202. Theoretical calculations revealed that the first step, a catalytic triad-assisted nucleophilic attack, is the rate-determining step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!