A field-aged, passive diesel particulate filter (DPF) used in a school bus retrofit program was evaluated for emissions of particle mass and number concentration before, during, and after regeneration. For the particle mass measurements, filter samples were collected for gravimetric analysis with a partial flow sampling system, which sampled proportionally to the exhaust flow. A condensation particle counter and scanning mobility particle sizer measured total number concentration and number-size distributions, respectively. The results of the evaluation show that the number concentration emissions decreased as the DPF became loaded with soot. However, after soot removal by regeneration, the number concentration emissions were approximately 20 times greater, which suggests the importance of the soot layer in helping to trap particles. Contrary to the number concentration results, particle mass emissions decreased from 6 +/- 1 mg/hp-hr before regeneration to 3 +/- 2 mg/hp-hr after regeneration. This indicates that nanoparticles with diameters less than 50 nm may have been emitted after regeneration because these particles contribute little to the total mass. Overall, average particle emission reductions of 95% by mass and 10,000-fold by number concentration after 4 yr of use provided evidence of the durability of a field-aged DPF. In contrast to previous reports for new DPFs in which elevated number concentrations occurred during the first 200 sec of a transient cycle, the number concentration emissions were elevated during the second half of the heavy-duty Federal Test Procedure (FTP) when high speed was sustained. This information is relevant for the analysis of mechanisms by which particles are emitted from field-aged DPFs.

Download full-text PDF

Source
http://dx.doi.org/10.3155/1047-3289.60.8.968DOI Listing

Publication Analysis

Top Keywords

number concentration
28
particle mass
12
concentration emissions
12
diesel particulate
8
particulate filter
8
number
8
emissions decreased
8
+/- mg/hp-hr
8
mg/hp-hr regeneration
8
particle
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!