2,4-D, dicamba and 4-CPA with auxin-like activity have been intensively used in agriculture, for the control of unwanted broadleaf weeds. An analytical method involving HPLC coupled with UVD was developed for the simultaneous analysis of these three analytes in Chinese cabbage, apple and pepper fruits (representative non-fatty samples) and brown rice and soybean (representative fatty samples) using liquid-liquid partitioning and column cleanup procedures. The residues were confirmed via tandem mass spectrometry (MS/MS) in ion electrospray ionization (ESI) mode. The standard curves were linear over the range of the tested concentrations (0.25-10 microg/mL), as shown by a marked linearity in excess of 0.9999 (r(2) ). The average recoveries (mean, n = 3) ranged from 94.30 to 102.63 in Chinese cabbage, from 94.76 to 108.47 in apple, from 97.52 to 102.27 in pepper, from 76.19 to 101.90 in brown rice, and from 74.60 to 107.39 in soybean. The relative standard deviations (RSDs) were <9% in all tested matrices. The limits of detection and quantitation were 0.006 and 0.02 mg/kg, respectively. Samples purchased from local markets were analyzed to evaluate the applicability of the methods developed herein. The concentration of the 2,4-D residue was measured at 0.102 mg/kg in the soybean sample; however, this level is exactly the same MRL set by the Korea Food and Drug Administration. This developed method deserves full and complete consideration, as it clearly displays the sensitivity, accuracy and precision required for residue analysis of 2,4-D, dicamba and 4-CPA in food crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.1513 | DOI Listing |
Arch Environ Contam Toxicol
January 2025
College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China.
The investigation focused on Tl, Hg, As, and Sb as the targeted contaminants in the soil surrounding a thallium mining region in southwestern China. Potential sources of toxic elements were identified using correlation analysis and principal component analysis. By interpreting the results of correlation and principal component analysis, the potential sources of Tl, Hg, As, and Sb were identified to include the mining and smelting industry.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China.
The photosynthetic mechanism responsible for the differences in yield between different rapeseed varieties remains unclear, and there have been no consensus and definite conclusions about the relationship between photosynthesis and yield. Representation of the whole plant by measuring the photosynthetic performance at a single site may lead to biased results. In this study, we comprehensively analyzed the main photosynthetic organs of four high-yielding rapeseed varieties at the seedling, bud, flowering, and podding stages.
View Article and Find Full Text PDFGels
December 2024
College of Resources and Environment Sciences, Gansu Agricultural University, Lanzhou 730070, China.
Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N'-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
Petroleum hydrocarbon pollutants in soil are challenging to biodegrade, negatively impacting plant growth as well as the metabolic activity and community structure of soil microorganisms. Microorganisms immobilized by seed carriers can synergistically contribute to the remediation of petroleum hydrocarbon-contaminated soil. We prepared a rape seed carrier with immobilized microorganism by seed coating (with a mixture of diatomaceous earth and bentonite as fillers) and microbial immobilization.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, China.
Background: Discovering insecticidal proteins with high activity and strict insect specificity and applying them to the biological control of insect pests is of great significance. Oral LqhIT2 has insecticidal activity, which most other insecticidal neurotoxin proteins do not have, but the large-scale preparation of the toxin is difficult and one of the obstacles to determining its anti-insect potential for biological control.
Results: In this study, the expression level of recombinant LqhIT2 (rLqhIT2) in Pichia pastoris was as high as 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!