Surface plasmon resonance analysis of the binding of high-risk mucosal HPV E6 oncoproteins to the PDZ1 domain of the tight junction protein MAGI-1.

J Mol Recognit

Équipe Oncoprotéines, FRE 3211, Institut de Recherche de l'École de Biotechnologie de Strasbourg, Université de Strasbourg, Boulevard Sébastien Brandt, BP 10413, 67412 Illkirch Cedex, France.

Published: September 2011

The E6 oncoproteins from high-risk mucosal human papillomavirus (HPV) induce cervical cancer via two major activities, the binding and the degradation of the p53 protein and PDZ domain-containing proteins. Human MAGI-1 is a multi-PDZ domain protein implicated into protein complex assembly at cell-cell contacts. High-risk mucosal HPV E6 proteins interact with the PDZ1 domain of MAGI-1 via a C-terminal consensus binding motif. Here, we developed a medium throughput protocol to accurately measure by surface plasmon resonance affinity constants of protein domains binding to peptidic sequences produced as recombinant fusions to the glutathione-S-transferase (GST). This approach was applied to measure the binding of MAGI-1 PDZ1 to the C-termini of viral or cellular proteins. Both high-risk mucosal HPV E6 C-terminal peptides and cellular partners of MAGI-1 PDZ1 bind to MAGI-1 PDZ1 with comparable dissociation constants in the micromolar range. MAGI-1 PDZ1 shows a preference for C-termini with a valine at position 0 and a negative charge at position -3, confirming previous studies performed with HPV18 E6. A detailed combined analysis via site-directed mutagenesis of the HPV16 C-terminal peptide and PDZ1 indicated that interactions mediated by charged residues upstream the PDZ-binding motif strongly contribute to binding selectivity of this interaction. In addition, our work highlighted the K(499) residue of MAGI-1 as a novel determinant of binding specificity. Finally, we showed that MAGI-1 PDZ1 also binds to the C-termini of LPP and Tax proteins, which were already known to bind to PDZ proteins but not to MAGI-1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.1056DOI Listing

Publication Analysis

Top Keywords

magi-1 pdz1
20
high-risk mucosal
16
mucosal hpv
12
magi-1
10
surface plasmon
8
plasmon resonance
8
pdz1
8
pdz1 domain
8
binding
7
protein
5

Similar Publications

Molecular insights into the interaction of HPV-16 E6 variants against MAGI-1 PDZ1 domain.

Sci Rep

February 2022

Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México.

Oncogenic protein E6 from Human Papilloma Virus 16 (HPV-16) mediates the degradation of Membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1), throughout the interaction of its protein binding motif (PBM) with the Discs-large homologous regions 1 (PDZ1) domain of MAG1-1. Generic variation in the E6 gene that translates to changes in the protein's amino acidic sequence modifies the interaction of E6 with the cellular protein MAGI-1. MAGI-1 is a scaffolding protein found at tight junctions of epithelial cells, where it interacts with a variety of proteins regulating signaling pathways.

View Article and Find Full Text PDF

Production of functional, stable, unmutated recombinant human papillomavirus E6 oncoprotein: implications for HPV-tumor diagnosis and therapy.

J Transl Med

July 2016

Laboratory of Biomedical Technologies (SSPT-TECS-TEB), Department for Sustainability, Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and the Environment (ENEA), 'Casaccia' Research Centre, Via Anguillarese 301, 00123, Rome, Italy.

Background: High-risk human papillomaviruses (HR-HPVs) types 16 and 18 are the main etiological agents of cervical cancer, with more than 550,000 new cases each year worldwide. HPVs are also associated with other ano-genital and head-and-neck tumors. The HR-HPV E6 and E7 oncoproteins are responsible for onset and maintenance of the cell transformation state, and they represent appropriate targets for development of diagnostic and therapeutic tools.

View Article and Find Full Text PDF

Background: Major histocompatibility complex class I (MHCI) proteins present antigenic peptides for immune surveillance and play critical roles in nervous system development and plasticity. Most MHCI are transmembrane proteins. The extracellular domain of MHCI interacts with immunoreceptors, peptides, and co-receptors to mediate immune signaling.

View Article and Find Full Text PDF

Disorder-to-order transition of MAGI-1 PDZ1 C-terminal extension upon peptide binding: thermodynamic and dynamic insights.

Biochemistry

February 2015

Equipe Oncoprotéines, Ecole Supérieure de Biotechnologie de Strasbourg, Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg, Boulevard Sébastien Brandt, BP 10413, 67412 Illkirch cedex, France.

PDZ domains are highly abundant protein-protein interaction modules commonly found in multidomain scaffold proteins. The PDZ1 domain of MAGI-1, a protein present at cellular tight junctions that contains six PDZ domains, is targeted by the E6 oncoprotein of the high-risk human papilloma virus. Thermodynamic and dynamic studies using complementary isothermal titration calorimetry and nuclear magnetic resonance (NMR) (15)N heteronuclear relaxation measurements were conducted at different temperatures to decipher the molecular mechanism of this interaction.

View Article and Find Full Text PDF

Unlabelled: The cancer-causing high-risk human papillomavirus (HPV) E6 oncoproteins target a number of cellular proteins that contain PDZ domains. However, the role of many of these interactions in either the HPV life cycle or in HPV-induced malignancy remains to be defined. Previous studies had shown that MAGI-1 was one of the most strongly bound PDZ domain-containing substrates of E6, and one consequence of this interaction appeared to facilitate the perturbation of tight junctions (TJs) by E6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!