AI Article Synopsis

  • There is significant interaction between adenosine A(2A) receptors (A(2A)Rs) and brain-derived neurotrophic factor (BDNF), which is crucial for regulating synaptic transmission.
  • A(2A)Rs not only help activate the BDNF receptor TrkB but also enhance the effects of BDNF, largely through the cAMP-PKA signaling pathway.
  • The importance of A(2A)Rs in maintaining BDNF levels suggests potential therapeutic implications for conditions like Huntington's disease, where both BDNF and A(2A)Rs are compromised.

Article Abstract

In the last few years, accumulating evidence has shown the existence of an important cross-talk between adenosine A(2A) receptors (A(2A)Rs) and brain-derived neurotrophic factor (BDNF). Not only are A(2A)Rs involved in the mechanism of transactivation of BDNF receptor TrkB, they also modulate the effect of BDNF on synaptic transmission, playing a facilitatory and permissive role. The cAMP-PKA pathway, the main transduction system operated by A(2A)Rs, is involved in such effects. Furthermore, a basal tonus of A(2A)Rs is required to allow the regulation of BDNF physiological levels in the brain, as demonstrated by the reduced protein levels measured in A(2A)Rs KO mice. The crucial role of adenosine A(2A)Rs in the maintenance of synaptic functions and BDNF levels will be reviewed here and discussed in the light of possible implications for Huntington's disease therapy, in which a joint impairment of BDNF and A(2A)Rs seems to play a pathogenetic role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763899PMC
http://dx.doi.org/10.1100/tsw.2010.164DOI Listing

Publication Analysis

Top Keywords

role adenosine
8
adenosine a2a
8
a2a receptors
8
synaptic functions
8
huntington's disease
8
bdnf a2ars
8
a2ars involved
8
bdnf
7
a2ars
7
role
4

Similar Publications

The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R).

View Article and Find Full Text PDF

METTL14 Mediates m6A methylation to improve osteogenesis under oxidative stress condition.

Redox Rep

December 2025

Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.

Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.

View Article and Find Full Text PDF

Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages.

Nat Commun

December 2024

Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.

The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages.

View Article and Find Full Text PDF

Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats.

Adv Sci (Weinh)

December 2024

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.

View Article and Find Full Text PDF

Objective: Potassium voltage-gated channel sub-family A member 1 (Kv1.1), as a shaker homolog potassium channel, displays a special mechanism for posttranscriptional regulation called RNA editing. Adenosine deaminase acting on RNA 2 (ADAR2) can cause abnormal editing or loss of normal editing, which results in cell damage and related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!