Sporulation of the budding yeast Saccharomyces cerevisiae — equivalent to gametogenesis in higher organisms, is a complex differentiation program induced by starvation of cells for nitrogen and carbon. Such environmental conditions activate coordinated, sequential changes in gene expression leading to production of haploid, stress-resistant spores. Sporulation comprises two rounds of meiosis coupled with spore morphogenesis and is tightly controlled to ensure viable progeny. This review concerns the regulation of differentiation process by nutritional and transcriptional signals.
Download full-text PDF |
Source |
---|
BBA Adv
October 2024
Department of Biochemistry, Panjab University, Chandigarh 160014, India.
Hal5 gene is involved in halo-tolerance of during high salt stress. Ethanol stress and high salt stress have similarities, as both decrease the availability of water for cells and strain the osmotic homeostasis across the cell membrane. The Hal5 over-expression strain of yeast has more ethanol tolerance, but the Hal5 null mutant strain also has more ethanol tolerance than the wild-type strain.
View Article and Find Full Text PDFFEMS Yeast Res
January 2025
Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.
Lager beer is traditionally fermented using Saccharomyces pastorianus. However, the limited availability of lager yeast strains restricts the potential range of beer profiles. Recently, Saccharomyces eubayanus strains showed the potential to impart novel aromas to beer, with slower fermentation rates than commercial strains.
View Article and Find Full Text PDFNonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biological Sciences, St. John's University, Queens, New York, USA. Electronic address:
One of the key events in DNA damage response (DDR) is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs), required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles and gluconeogenesis.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!