Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Extensible Markup Language (XML) is increasingly being used for biomedical data exchange. The parallel growth in the use of ontologies in biomedicine presents opportunities for combining the two technologies to leverage the semantic reasoning services provided by ontology-based tools. There are currently no standardized approaches for taking XML-encoded biomedical information models and representing and reasoning with them using ontologies. To address this shortcoming, we have developed a workflow and a suite of tools for transforming XML-based information models into domain ontologies encoded using OWL. In this study, we applied semantics reasoning methods to these ontologies to automatically generate domain-level inferences. We successfully used these methods to develop semantic reasoning methods for information models in the HIV and radiological image domains.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!