Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Classification is an important medical decision support function that can be seriously affected by disproportionate class distribution in the training data. In medical decision making, the rate of misclassification and the cost of misclassifying a minority (positive) class as a majority (negative) class are especially high. In this paper, we propose a new model-driven sampling approach to balancing data samples. Most existing data sampling methods produce new data points based on local, deterministic information. Our approach extends the idea of generative sampling to produce new data points based on an induced probabilistic graphical model. We present the motivation and the design of the proposed algorithm, and compare it with two representative imbalanced data sampling approaches on four medical data sets varying in size, imbalance ratio, and dimension. The empirical study helped identify the challenges in imbalanced data problems in medicine, and highlighted the strengths and limitations of the relevant sampling approaches. Performance of the model driven approach is shown to be comparable with existing approaches; potential improvements could be achieved by incorporating domain knowledge.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!