Proteome-wide quantitation by SILAC.

Methods Mol Biol

Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.

Published: December 2010

Ongoing improvements in instrumentation, fractionation techniques, and enrichment procedures have dramatically increased the coverage of the proteome achievable via LC-MS/MS-based methodologies, opening the call for approaches to quantitatively assess differences at a proteome-wide scale. Stable isotope labeling by amino acids in cell culture (SILAC) has emerged as a powerful and versatile approach for proteome-wide quantitation by mass spectrometry. SILAC utilizes the cells' own metabolism to incorporate isotopically labeled amino acids into its proteome which can be mixed with the proteome of unlabeled cells and differences in protein expression can easily be read out by comparing the abundance of the labeled versus unlabeled proteins. SILAC has been applied to numerous different cell lines and the technique has been adapted for a wide range of experimental procedures. In this chapter we provide detailed procedure for performing SILAC-based experiment for proteome-wide quantitation, including a protocol for optimizing SILAC labeling. We also provide an update on the most recent developments of this technique.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60761-780-8_11DOI Listing

Publication Analysis

Top Keywords

proteome-wide quantitation
12
amino acids
8
silac
5
proteome-wide
4
quantitation silac
4
silac ongoing
4
ongoing improvements
4
improvements instrumentation
4
instrumentation fractionation
4
fractionation techniques
4

Similar Publications

Multivariate proteome-wide association study to identify causal proteins for Alzheimer disease.

Am J Hum Genet

January 2025

Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA. Electronic address:

Alzheimer disease (AD) is a complex and progressive neurodegenerative disorder that accounts for the majority of individuals with dementia. Here, we aim to identify causal plasma proteins for AD, shedding light on the etiology of AD. We utilized the latest large-scale plasma proteomic data from the UK Biobank Pharma Proteomics Project (UKB-PPP) and AD genome-wide association study (GWAS) summary data from the International Genomics of Alzheimer's Project (IGAP).

View Article and Find Full Text PDF

Gene-level analysis reveals the genetic aetiology and therapeutic targets of schizophrenia.

Nat Hum Behav

January 2025

Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.

Genome-wide association studies (GWASs) have reported multiple risk loci for schizophrenia (SCZ). However, the majority of the associations were from populations of European ancestry. Here we conducted a large-scale GWAS in Eastern Asian populations (29,519 cases and 44,392 controls) and identified ten Eastern Asian-specific risk loci, two of which have not been previously reported.

View Article and Find Full Text PDF

Proteome-Wide Mendelian Randomization Analysis to Identify Potential Plasma Biomarkers and Therapeutic Targets for Epithelial Ovarian Cancer Subtypes.

Int J Womens Health

December 2024

Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.

Background: Epithelial ovarian cancer (EOC) remains an unmet medical challenge due to its insidious onset, atypical symptoms, and increasing resistance to conventional chemotherapeutic agents. It is imperative to explore novel biomarkers and generate innovative target drugs.

Methods: To identify potential proteins with causal association to EOC subtypes, we conducted a Mendelian Randomization (MR) analysis using 15,419 protein quantitative trait loci (pQTLs) associated with 2015 proteins.

View Article and Find Full Text PDF

Introduction: Strains of the syphilis spirochete, ssp. , group into one of two deep-branching clades: the Nichols clade or the globally dominant Street Strain 14 (SS14) clade. To date, in-depth proteome-wide analyses have focused on Nichols clade strains.

View Article and Find Full Text PDF

Skin cancer is one of the most common cancers worldwide. Some risk factors including sun exposure and MC1R variants are recognized; however, the identification of additional genetic factors is essential for the development of novel therapeutic strategies. Here, we conducted a proteome-wide Mendelian randomization (MR) using plasma protein quantitative trait loci (pQTLs) from a published study and the UK Biobank genome-wide association study (GWAS) of skin cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!