We present an efficient, yet inexpensive, approach for isolating viable single cells or colonies from a mixed population. This cell microarray platform possesses innovations in both the array manufacture and the manner of target cell release. Arrays of microwells with bases composed of detachable concave elements, termed microrafts, were fabricated by a dip-coating process using a polydimethylsiloxane mold as the template and the array substrate. This manufacturing approach enabled the use of materials other than photoresists to create the array elements. Thus microrafts possessing low autofluorescence could be fabricated for fluorescence-based identification of cells. Cells plated on the microarray settled and attached at the center of the wells due to the microrafts' concavity. Individual microrafts were readily dislodged by the action of a needle inserted through the compliant polymer substrate. The hard polymer material (polystyrene or epoxy resin) of which the microrafts were composed protected the cells from damage by the needle. For cell analysis and isolation, cells of interest were identified using a standard inverted microscope and microrafts carrying target cells were dislodged with the needle. The released cells/microrafts could be efficiently collected, cultured and clonally expanded. During the separation and collection procedures, the cells remained adherent and provided a measure of protection during manipulation, thus providing an extremely high single-cell cloning rate (>95%). Generation of a transfected cell line based on expression of a fluorescent protein demonstrated an important application for performing on-chip cell separations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994190 | PMC |
http://dx.doi.org/10.1039/c0lc00186d | DOI Listing |
Syst Biol Reprod Med
December 2025
Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Front Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!