The chromosomal inversion polymorphism in natural populations of D. subobscura was investigated near Zürich, Switzerland, in 1986 and 1987. These data are compared with earlier data from 1963, 1964 and 1984, collected in the same region. In all five acrocentric chromosomes, significant differences in the proportions of the dominant gene arrangements occurred; in the chromosomes A, I, O and U the standard order decreased from the sixties to the eighties, whereas the arrangements I1, O3+4, O3+4+8 and U1+2 became more frequent.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00360865DOI Listing

Publication Analysis

Top Keywords

polymorphism natural
8
natural populations
8
zürich switzerland
8
chromosomal polymorphism
4
populations drosophila
4
drosophila subobscura
4
subobscura zürich
4
switzerland contribution
4
contribution long-term
4
long-term comparisons
4

Similar Publications

Associated factors related to production of autoantibodies and dermo-epidermal separation in bullous pemphigoid.

Arch Dermatol Res

January 2025

Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, 9 Dongdan 3rd Alley, Beijing, 100730, China.

Bullous pemphigoid (BP) is a debilitating autoimmune skin blistering disease, characterized by the deposition of specific autoantibodies at the dermal-epidermal junction. This leads to an inflammatory cascade involving the activation of complement proteins, mast cell degranulation, immune cell recruitment, and the release of proteases by granulocytes. While several cytokines and signaling pathways have been implicated in the pathogenesis of BP, the precise mechanism behind autoantibody production remains unclear.

View Article and Find Full Text PDF

Cotton is an important crop for fiber production, but the genetic basis underlying key agronomic traits, such as fiber quality and flowering days, remains complex. While machine learning (ML) has shown great potential in uncovering the genetic architecture of complex traits in other crops, its application in cotton has been limited. Here, we applied five machine learning models-AdaBoost, Gradient Boosting Regressor, LightGBM, Random Forest, and XGBoost-to identify loci associated with fiber quality and flowering days in cotton.

View Article and Find Full Text PDF

Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity.

J Fungi (Basel)

January 2025

College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China.

Wheat leaf rust caused by () is a prevalent disease worldwide, seriously threatening wheat production. acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of and effective control of leaf rust.

View Article and Find Full Text PDF

is an endangered tree species, and detecting its genetic diversity can reveal the mechanisms of endangerment, providing references for the conservation of genetic resources. Samples of 137 trees across seven populations within Fujian Province were collected and sequenced using double-digest restriction site-associated DNA (ddRAD-seq). A total of 3,687,189 single-nucleotide polymorphisms (SNPs) were identified, and 15,158 high-quality SNPs were obtained after filtering.

View Article and Find Full Text PDF

Copy number variations of the human gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!