The 5-HT3 receptor is rapidly potentiated by ethanol and mediates fast excitatory serotonin (5-HT) transmission that modulates dopamine release in the reward circuitry. The 5-HT transporter regulates synaptic 5-HT availability. Functional polymorphisms in genes encoding the transporter and receptor may therefore influence addiction vulnerability. In this study, 360 treatment-seeking African American male patients with single and comorbid DSM-IV lifetime diagnoses of alcohol, cocaine and heroin dependence and 187 African American male controls were genotyped for the triallelic 5-HTTLPR functional polymorphism in the 5-HT transporter gene (SLC6A4) and 16 haplotype-tagging single-nucleotide polymorphisms (SNPs) across HTR3B (including the functional rs1176744 Tyr129Ser) and HTR3A, genes encoding 5-HT3 receptors. The HTR3B rs1176744 gain-of-function Ser129 allele predicted alcohol dependence (P=0.002) and low 5-HTTLPR activity predicted cocaine/heroin dependence (P=0.01). Both the HTR3B Ser129 allele (P=0.014, odds ratio (OR)=1.7 (1.1-2.6)) and low 5-HTTLPR activity (P=0.011, OR=2.5 (1.3-4.6)) were more common in men with alcohol+drug dependence compared with controls. Moreover, the HTR3B Ser129 allele and low 5-HTTLPR activity had an additive (but not an interactive) effect on alcohol+drug dependence (OR=6.0 (2.1-16.6)) that accounted for 13% of the variance. One possible explanation of our findings is that increased synaptic 5-HT coupled with increased 5-HT3 receptor responsiveness may result in enhanced dopamine transmission in the reward pathway, a predictor of increased risk for addiction. Our results may have pharmacogenetic implications for 5-HT3 therapeutic antagonists such as ondansetron.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003772PMC
http://dx.doi.org/10.1038/mp.2010.94DOI Listing

Publication Analysis

Top Keywords

5-ht3 receptor
12
ser129 allele
12
low 5-httlpr
12
5-httlpr activity
12
5-ht transporter
8
synaptic 5-ht
8
genes encoding
8
african american
8
american male
8
htr3b ser129
8

Similar Publications

Investigating the Mechanisms Involved in Scopolamine-induced Memory Degradation.

Arch Razi Inst

June 2024

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.

View Article and Find Full Text PDF

Ondansetron blocks fluoxetine effects in immature neurons in the adult rat piriform cortex layer II.

Neurosci Lett

December 2024

Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain. Electronic address:

Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3.

View Article and Find Full Text PDF

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Olanzapine, an atypical antipsychotic, is widely used in the treatment of schizophrenia and bipolar disorder due to its modulation of dopamine and serotonin receptor systems. While its primary action involves antagonism of dopamine D2 and serotonin 5-HT (5-hydroxytryptamine)A receptors, recent evidence suggests that olanzapine also inhibits 5-HT receptors, which are ligand-gated ion channels involved in synaptic transmission in central and peripheral nervous systems. The present study aimed to investigate the action of olanzapine on 5-HT receptor-mediated currents using whole-cell voltage-clamp recordings in NCB-20 neuroblastoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!