Many cancer cells contain more than two centrosomes, which imposes a potential for multipolar mitoses, leading to cell death. To circumvent this, cancer cells develop mechanisms to cluster supernumerary centrosomes to form bipolar spindles, enabling successful mitosis. Disruption of centrosome clustering thus provides a selective means of killing supernumerary centrosome-harboring cancer cells. Although the mechanisms of centrosome clustering are poorly understood, recent genetic analyses have identified requirements for both actin and tubulin regulating proteins. In this study, we demonstrate that the integrin-linked kinase (ILK), a protein critically involved in actin and mitotic microtubule organization, is required for centrosome clustering. Inhibition of ILK expression or activity inhibits centrosome clustering in several breast and prostate cancer cell lines that have centrosome amplification. Furthermore, cancer cells with supernumerary centrosomes are significantly more sensitive to ILK inhibition than cells with two centrosomes, demonstrating that inhibiting ILK offers a selective means of targeting cancer cells. Live cell analysis shows ILK perturbation leads cancer cells to undergo multipolar anaphases, mitotic arrest and cell death in mitosis. We also show that ILK performs its centrosome clustering activity in a focal adhesion-independent, but centrosome-dependent, manner through the microtubule regulating proteins TACC3 and ch-TOG. In addition, we identify a specific TACC3 phosphorylation site that is required for centrosome clustering and demonstrate that ILK regulates this phosphorylation in an Aurora-A-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/onc.2010.431 | DOI Listing |
Cell Prolif
January 2025
Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey.
Haematological and Neurological Expressed 1 (HN1) is an oncogene for various cancers and previously has been linked with centrosome clustering and cell cycle pathways. Moreover, HN1 has recently been reported to activate mTOR signalling, which is the regulator of ribosome biogenesis and maintenance. We explored the role of HN1 in mTOR signalling through various gain- and loss-of-function experiments using biochemical approaches in different cell lines.
View Article and Find Full Text PDFEMBO Rep
January 2025
Cellular and Molecular Physiology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK.
Cancer cells often display centrosome amplification, requiring the kinesin KIFC1/HSET for centrosome clustering to prevent multipolar spindles and cell death. In parallel siRNA screens of deubiquitinase enzymes, we identify OTUD6B as a positive regulator of KIFC1 expression that is required for centrosome clustering in triple-negative breast cancer (TNBC) cells. OTUD6B can localise to centrosomes and the mitotic spindle and interacts with KIFC1.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Life Sciences, University of Siena, Siena, Italy.
We analysed here the dynamic of the kinesin-like Pavarotti (Pav) during male gametogenesis of wild-type and Sas4 mutant flies. Pav localizes to the equatorial region and the inner central spindle of late anaphase wild-type spermatogonia and displays a strong concentration at the midbody during late telophase. At metaphase of the first meiotic division, Pav shows widespread localization on the equatorial region of the spermatocytes.
View Article and Find Full Text PDFChromosome Res
January 2025
Department of Biology, Sonoma State University, Rohnert Park, CA, USA.
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!