Background: We investigated the effects of cardiopulmonary bypass (CPB) on the contractile response of human peripheral microvasculature to endothelin-1 (ET-1), examined the role of specific ET receptors and protein kinase C-alpha (PKC-α), and analyzed ET-1-related gene/protein expression in this response.

Methods And Results: Human skeletal muscle arterioles (90 to 180 μm in diameter) were dissected from tissue harvested before and after CPB from 30 patients undergoing cardiac surgery. In vitro contractile response to ET-1 was assessed by videomicroscopy, with and without an endothelin-A (ET-A) receptor antagonist, an endothelin-B (ET-B) antagonist, or a PKC-α inhibitor. The post-CPB contractile response of peripheral arterioles to ET-1 was significantly decreased compared with pre-CPB response. The response to ET-1 was significantly inhibited in the presence of the ET-A antagonist BQ123 but unchanged in the presence of the ET-B receptor antagonist BQ788. Pretreatment with the PKC-α inhibitor safingol reversed ET-1-induced response from contraction to relaxation. The total protein levels of ET-A and ET-B receptors were not altered after CPB. Microarray analysis showed no significant changes in the gene expression of ET receptors, ET-1-related proteins, and protein kinases after CPB.

Conclusions: CPB decreases myogenic contractile function of human peripheral arterioles in response to ET-1. The contractile response to ET-1 is through activation of ET-A receptors and PKC-α. CPB has no effects on ET-1-related gene/protein expression. These results provide novel mechanisms of ET-1-induced contraction in the setting of vasomotor dysfunction after cardiac surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943858PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.928226DOI Listing

Publication Analysis

Top Keywords

contractile response
16
response et-1
16
effects cardiopulmonary
8
cardiopulmonary bypass
8
human skeletal
8
skeletal muscle
8
response
8
human peripheral
8
et-1-related gene/protein
8
gene/protein expression
8

Similar Publications

The purpose was to assess whether visual feedback of torque contributes to motor unit (MU) firing rate reduction observed during post-activation potentiation (PAP) of skeletal muscle. From 15 participants 23 MUs were recorded with intramuscular fine-wire electrodes from the tibialis anterior during isometric dorsiflexion contractions at 20% of maximum, with and without both PAP and visual feedback of torque. A 5s maximal voluntary contraction (MVC) was used to induce PAP, and evoked twitch responses were assessed before and after.

View Article and Find Full Text PDF

Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection.

Tissue Eng Regen Med

January 2025

Department of Physiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.

Background: Direct reprogramming of fibroblasts into chemically induced cardiomyocyte-like cells (CiCMs) through small molecules presents a promising cell source for cardiac regeneration and therapeutic development. However, the contaminating non-cardiomyocytes, primarily unconverted fibroblasts, reduce the effectiveness of CiCMs in various applications. This study investigated a metabolic selection approach using lactate to enrich CiCMs by exploiting the unique metabolic capability of cardiomyocytes to utilize lactate as an alternative energy source.

View Article and Find Full Text PDF

Tubulin Acetylation Enhances Microtubule Stability in Trabecular Meshwork Cells Under Mechanical Stress.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.

Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.

Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.

View Article and Find Full Text PDF

Signalling pathways involved in urotensin II induced ventricular myocyte hypertrophy.

PLoS One

January 2025

Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom.

Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved.

View Article and Find Full Text PDF

Cold-water fishes, such as Brook trout (Salvelinus fontinalis), are being challenged by the consequences of climate change. The ability of these fish to acclimate to warmer environmental conditions is vital to their survival. Acclimation to warmer water may allow brook trout to reduce the metabolic costs of higher temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!