A passive sampling-based analytical strategy for the determination of volatile organic compounds in the air of working areas.

Anal Chim Acta

Analytical Chemistry Department, University of Valencia, Edifici Jeroni Muñoz, 50 Dr. Moliner, 46100 Burjassot, Valencia, Spain.

Published: September 2010

An analytical methodology based on the use of a polyethylene layflat tube filled with activated carbon and Florisil (ACFL-VERAM) was employed for the passive sampling of volatile organic compounds (VOCs) in the air of working areas of packing industries. VOCs amount in the ACFL-VERAM sampler was directly determined through head-space-gas chromatography-mass spectrometry (HS-GC-MS) allowing a direct determination in only 20 min without the need of any previous treatment. Uptake parameters, like sampling rate (R(S)) and sampler-air partition coefficient (K(SA)), were determined for every studied VOC from adsorption isotherm data. Additionally, experimental equations have been proposed to predict R(S) and K(SA) from the octanol-air partition coefficients reported in the literature. The proposed methodology reaches method detection levels from 0.007 to 0.2 mg m(-3) for the studied VOCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2010.08.013DOI Listing

Publication Analysis

Top Keywords

volatile organic
8
organic compounds
8
air working
8
working areas
8
passive sampling-based
4
sampling-based analytical
4
analytical strategy
4
strategy determination
4
determination volatile
4
compounds air
4

Similar Publications

Plant growth promotion via priming with volatile organic compounds emitted from strain EXTN-1.

Front Microbiol

January 2025

Research Institute of International Agriculture, Technology and Information, Hankyong National University, Anseong-si, Republic of Korea.

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain (EXTN-1) on tobacco plant growth is dependent on the culture media used.

View Article and Find Full Text PDF

Circadian Analysis in Volatile Organic Compounds from Kunth Fruits and Their Potential Role in Attracting Bats.

ACS Omega

January 2025

Departamento de Química, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 100, Jardim das Américas, CP 19081, 81531-980 Curitiba, Paraná, Brazil.

Piper fruits are one of the main dietary sources of , a fruit-eating bat largely responsible for dispersing their seeds. To investigate the mechanism of this plant-animal interaction, ripe and unripe fruits of were collected in the morning, afternoon, and night. The volatile organic compounds (VOC) were obtained through dynamic headspace (HS) and hydrodistillation (HD) and were analyzed by gas chromatography with flame ionization detector and GC-MS, resulting in the identification of ninety-five compounds.

View Article and Find Full Text PDF

Biofiltration for odor mitigation in water resource recovery facilities.

Sci Total Environ

January 2025

Department of Civil Engineering, City College of New York, New York, NY 10031, United States.

Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards.

View Article and Find Full Text PDF

Evaluation of hazardous substances emitted during mask use.

Environ Int

January 2025

Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea. Electronic address:

This study evaluated the inhalation of mask-derived materials by simulating real breathing conditions and examined how the amount of inhaled materials varies with breathing flow rate and duration. Three types of non-certified reusable masks and two types of certified disposable masks were selected. For each mask, five different hazardous materials were captured and analyzed in three replicates with two breathing flow rates of 30 L/min and 85 L/min and two breathing time combinations of 15 min and 60 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!