Download full-text PDF

Source
http://dx.doi.org/10.1042/bst0180877DOI Listing

Publication Analysis

Top Keywords

tamoxifen inhibits
4
inhibits rna
4
rna protein
4
protein synthesis
4
synthesis simultaneously
4
simultaneously saccharomyces
4
saccharomyces cerevisiae
4
cerevisiae partial
4
partial protection
4
protection antioxidants
4

Similar Publications

Targeting Oestrogen Receptor Signalling in Breast Cancer Therapy.

Adv Exp Med Biol

January 2025

Division of Cancer Sciences, University of Manchester, Manchester, UK.

There has been over 130 years of research into the treatment of breast cancer using approaches that target oestrogen receptor signalling. Here, we summarise the development of the key pillars of such endocrine therapy, namely, oestrogen deprivation, achieved through ovarian suppression and/or aromatase inhibition, and oestrogen receptor blockade, through selective oestrogen receptor modulators, downregulators and novel compounds entering early phase development. The translation of these compounds from advanced to early breast cancer settings is discussed with a focus on the placebo-controlled breast cancer prevention studies to most accurately describe the side effect profiles of the main approaches.

View Article and Find Full Text PDF

Tamoxifen, a common adjuvant therapy for hormone receptor-positive breast cancer, is associated with an increased risk of endometrial pathologies, such as hyperplasia, polyps, and carcinoma. This study investigates rapamycin, an mTOR inhibitor, as a potential novel strategy for preventing tamoxifen-induced endometrial proliferation. This in vitro study utilised endometrial stromal cells isolated from infertile women.

View Article and Find Full Text PDF

Background: A biocompatible polymeric nanoparticle, TQ-PLGA-PF68, was developed through the interaction of the phytochemical thymoquinone (TQ) encapsulated in poly(L-lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-PEG) with Pluronics F68. So far, this combination has not been assessed on breast cancer cells resistant to anti-cancer drugs. Therefore, this study aimed to assess the cell death caused by TQ-PLGA-PF68 nanoparticles, particularly in resistant breast cancer cell lines expressing estrogen receptor (ER) positivity, such as TamR MCF-7.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Background: N6-methyladenosine (mA)-mediated epitranscriptomic pathway has been shown to contribute to chemoresistance and radioresistance. Our previous work confirmed the defense of lycorine against tamoxifen resistance of breast cancer (BC) through targeting HOXD antisense growth-associated long non-coding RNA (HAGLR). Whereas, the precise regulation among them remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!